Solving Mazes Using Microfluidic Networks
This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the...
Gespeichert in:
Veröffentlicht in: | Langmuir 2003-05, Vol.19 (11), p.4714-4722 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4722 |
---|---|
container_issue | 11 |
container_start_page | 4714 |
container_title | Langmuir |
container_volume | 19 |
creator | Fuerstman, Michael J Deschatelets, Pascal Kane, Ravi Schwartz, Alexander Kenis, Paul J. A Deutch, John M Whitesides, George M |
description | This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances. |
doi_str_mv | 10.1021/la030054x |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la030054x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_SZMS10X9_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</originalsourceid><addsrcrecordid>eNptzzFPwzAQBWALgUQoDPyDLAwdDHexHccjqqAgtVAprYRYLMdxUNrQILuFwq8nENSJ6W749PQeIecIlwgJXjUGGIDguwMSoUiAiiyRhyQCyRmVPGXH5CSEJQAoxlVEhnnbvNfrl3hqvlyIF-H3r61vq2Zbl7WNH9zmo_WrcEqOKtMEd_Z3B2RxezMf3dHJ4_h-dD2hhrFkQxFTw4uMm1QJXoFF4coqLRO0ReYKZaySmRIobVFw29GESSyMkTbLsOKYsgEZ9rldhxC8q_Sbr1-N_9QI-mej3m_sLO1tHTZut4fGr3QqmRR6Pst1_jzNEZ6UnnX-ovfGBr1st37dLfkn9xsQIl6V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solving Mazes Using Microfluidic Networks</title><source>American Chemical Society Journals</source><creator>Fuerstman, Michael J ; Deschatelets, Pascal ; Kane, Ravi ; Schwartz, Alexander ; Kenis, Paul J. A ; Deutch, John M ; Whitesides, George M</creator><creatorcontrib>Fuerstman, Michael J ; Deschatelets, Pascal ; Kane, Ravi ; Schwartz, Alexander ; Kenis, Paul J. A ; Deutch, John M ; Whitesides, George M</creatorcontrib><description>This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la030054x</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2003-05, Vol.19 (11), p.4714-4722</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</citedby><cites>FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la030054x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la030054x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Fuerstman, Michael J</creatorcontrib><creatorcontrib>Deschatelets, Pascal</creatorcontrib><creatorcontrib>Kane, Ravi</creatorcontrib><creatorcontrib>Schwartz, Alexander</creatorcontrib><creatorcontrib>Kenis, Paul J. A</creatorcontrib><creatorcontrib>Deutch, John M</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><title>Solving Mazes Using Microfluidic Networks</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptzzFPwzAQBWALgUQoDPyDLAwdDHexHccjqqAgtVAprYRYLMdxUNrQILuFwq8nENSJ6W749PQeIecIlwgJXjUGGIDguwMSoUiAiiyRhyQCyRmVPGXH5CSEJQAoxlVEhnnbvNfrl3hqvlyIF-H3r61vq2Zbl7WNH9zmo_WrcEqOKtMEd_Z3B2RxezMf3dHJ4_h-dD2hhrFkQxFTw4uMm1QJXoFF4coqLRO0ReYKZaySmRIobVFw29GESSyMkTbLsOKYsgEZ9rldhxC8q_Sbr1-N_9QI-mej3m_sLO1tHTZut4fGr3QqmRR6Pst1_jzNEZ6UnnX-ovfGBr1st37dLfkn9xsQIl6V</recordid><startdate>20030527</startdate><enddate>20030527</enddate><creator>Fuerstman, Michael J</creator><creator>Deschatelets, Pascal</creator><creator>Kane, Ravi</creator><creator>Schwartz, Alexander</creator><creator>Kenis, Paul J. A</creator><creator>Deutch, John M</creator><creator>Whitesides, George M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030527</creationdate><title>Solving Mazes Using Microfluidic Networks</title><author>Fuerstman, Michael J ; Deschatelets, Pascal ; Kane, Ravi ; Schwartz, Alexander ; Kenis, Paul J. A ; Deutch, John M ; Whitesides, George M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a332t-116a4b84a6954f0c15edf6d21cb8eb9ac9789517cbb4c6a42371baa7c881f4163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuerstman, Michael J</creatorcontrib><creatorcontrib>Deschatelets, Pascal</creatorcontrib><creatorcontrib>Kane, Ravi</creatorcontrib><creatorcontrib>Schwartz, Alexander</creatorcontrib><creatorcontrib>Kenis, Paul J. A</creatorcontrib><creatorcontrib>Deutch, John M</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuerstman, Michael J</au><au>Deschatelets, Pascal</au><au>Kane, Ravi</au><au>Schwartz, Alexander</au><au>Kenis, Paul J. A</au><au>Deutch, John M</au><au>Whitesides, George M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Mazes Using Microfluidic Networks</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2003-05-27</date><risdate>2003</risdate><volume>19</volume><issue>11</issue><spage>4714</spage><epage>4722</epage><pages>4714-4722</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>This work demonstrates that pressure-driven flow in a microfluidic network can solve mazelike problems by exploring all possible solutions in a parallel fashion. Microfluidic networks can be fabricated easily by soft lithography and rapid prototyping. To find the best path between the inlet and the outlet of these networks, the channels are filled with a fluid, and the path of a second, dyed fluid moving under pressure-driven flow is traced from the inlet to the outlet. Varying the viscosities of these fluids allows the behavior of the system to be tailored. For example, filling the channels with immiscible fluids of different viscosities enhances the resolution of paths of different fluidic resistances.</abstract><pub>American Chemical Society</pub><doi>10.1021/la030054x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2003-05, Vol.19 (11), p.4714-4722 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_crossref_primary_10_1021_la030054x |
source | American Chemical Society Journals |
title | Solving Mazes Using Microfluidic Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Mazes%20Using%20Microfluidic%20Networks&rft.jtitle=Langmuir&rft.au=Fuerstman,%20Michael%20J&rft.date=2003-05-27&rft.volume=19&rft.issue=11&rft.spage=4714&rft.epage=4722&rft.pages=4714-4722&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la030054x&rft_dat=%3Cistex_cross%3Eark_67375_TPS_SZMS10X9_P%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |