Capillary Condensation and Snap-off in Nanoscale Contacts

When a surface is placed in a vapor, several layers of molecules may adsorb depending on the intermolecular forces involved. As two such surfaces are brought together, a critical point is reached at which the gas condenses between the surfaces, forming a capillary across the gap. A cohesive force is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2001-02, Vol.17 (3), p.688-698
Hauptverfasser: Stroud, William J, Curry, Joan E, Cushman, John H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 3
container_start_page 688
container_title Langmuir
container_volume 17
creator Stroud, William J
Curry, Joan E
Cushman, John H
description When a surface is placed in a vapor, several layers of molecules may adsorb depending on the intermolecular forces involved. As two such surfaces are brought together, a critical point is reached at which the gas condenses between the surfaces, forming a capillary across the gap. A cohesive force is associated with the condensed bridge. The reverse process wherein the capillary bridge degenerates as the surfaces are moved apart is called snap-off. These processes play a profound role on scales from the nano to the macro. We have studied this phenomenon via isostrain grand canonical Monte Carlo statistical mechanical simulations for Lennard-Jones fluids. Specifically, we have examined capillary condensation and snap-off between nanocontacts, infinite rectilinear nanowires, and finite rectilinear nanoplatelets, where macroscale concepts and theories are just about impossible to apply. These results are compared to condensation between infinite parallel plates. We discuss our results in terms of the Kelvin equation and van der Waals film-thickening model.
doi_str_mv 10.1021/la0013143
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_la0013143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d069205230</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-751e9244adf2b4239ef44bb01c6f7d67c350b8d4e7dd071e24842a708ec87f63</originalsourceid><addsrcrecordid>eNptz0tLw0AUhuFBFIzVhf8gGxcuRs9ckkmWErxBqUqCXQ4nc4HUOCmZCPrvTal05epsHj7OS8glgxsGnN32CMAEk-KIJCzjQLOCq2OSgJKCKpmLU3IW4wYASiHLhJQVbru-x_EnrYZgXYg4dUNIMdi0Drilg_dpF9IVhiEa7N2OTWimeE5OPPbRXfzdBWke7pvqiS5fHp-ruyVFXmYTVRlzJZcSreet5KJ0Xsq2BWZyr2yujMigLax0ylpQzHFZSI4KCmcK5XOxINf7WTMOMY7O6-3Yfc7_agZ6l6wPybOle9vFyX0fII4fOldCZbp5rXVTs9XbWr7r9eyv9h5N1JvhawxzyD-7vweFYug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Capillary Condensation and Snap-off in Nanoscale Contacts</title><source>American Chemical Society Journals</source><creator>Stroud, William J ; Curry, Joan E ; Cushman, John H</creator><creatorcontrib>Stroud, William J ; Curry, Joan E ; Cushman, John H</creatorcontrib><description>When a surface is placed in a vapor, several layers of molecules may adsorb depending on the intermolecular forces involved. As two such surfaces are brought together, a critical point is reached at which the gas condenses between the surfaces, forming a capillary across the gap. A cohesive force is associated with the condensed bridge. The reverse process wherein the capillary bridge degenerates as the surfaces are moved apart is called snap-off. These processes play a profound role on scales from the nano to the macro. We have studied this phenomenon via isostrain grand canonical Monte Carlo statistical mechanical simulations for Lennard-Jones fluids. Specifically, we have examined capillary condensation and snap-off between nanocontacts, infinite rectilinear nanowires, and finite rectilinear nanoplatelets, where macroscale concepts and theories are just about impossible to apply. These results are compared to condensation between infinite parallel plates. We discuss our results in terms of the Kelvin equation and van der Waals film-thickening model.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la0013143</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2001-02, Vol.17 (3), p.688-698</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-751e9244adf2b4239ef44bb01c6f7d67c350b8d4e7dd071e24842a708ec87f63</citedby><cites>FETCH-LOGICAL-a295t-751e9244adf2b4239ef44bb01c6f7d67c350b8d4e7dd071e24842a708ec87f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la0013143$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la0013143$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Stroud, William J</creatorcontrib><creatorcontrib>Curry, Joan E</creatorcontrib><creatorcontrib>Cushman, John H</creatorcontrib><title>Capillary Condensation and Snap-off in Nanoscale Contacts</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>When a surface is placed in a vapor, several layers of molecules may adsorb depending on the intermolecular forces involved. As two such surfaces are brought together, a critical point is reached at which the gas condenses between the surfaces, forming a capillary across the gap. A cohesive force is associated with the condensed bridge. The reverse process wherein the capillary bridge degenerates as the surfaces are moved apart is called snap-off. These processes play a profound role on scales from the nano to the macro. We have studied this phenomenon via isostrain grand canonical Monte Carlo statistical mechanical simulations for Lennard-Jones fluids. Specifically, we have examined capillary condensation and snap-off between nanocontacts, infinite rectilinear nanowires, and finite rectilinear nanoplatelets, where macroscale concepts and theories are just about impossible to apply. These results are compared to condensation between infinite parallel plates. We discuss our results in terms of the Kelvin equation and van der Waals film-thickening model.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptz0tLw0AUhuFBFIzVhf8gGxcuRs9ckkmWErxBqUqCXQ4nc4HUOCmZCPrvTal05epsHj7OS8glgxsGnN32CMAEk-KIJCzjQLOCq2OSgJKCKpmLU3IW4wYASiHLhJQVbru-x_EnrYZgXYg4dUNIMdi0Drilg_dpF9IVhiEa7N2OTWimeE5OPPbRXfzdBWke7pvqiS5fHp-ruyVFXmYTVRlzJZcSreet5KJ0Xsq2BWZyr2yujMigLax0ylpQzHFZSI4KCmcK5XOxINf7WTMOMY7O6-3Yfc7_agZ6l6wPybOle9vFyX0fII4fOldCZbp5rXVTs9XbWr7r9eyv9h5N1JvhawxzyD-7vweFYug</recordid><startdate>20010206</startdate><enddate>20010206</enddate><creator>Stroud, William J</creator><creator>Curry, Joan E</creator><creator>Cushman, John H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010206</creationdate><title>Capillary Condensation and Snap-off in Nanoscale Contacts</title><author>Stroud, William J ; Curry, Joan E ; Cushman, John H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-751e9244adf2b4239ef44bb01c6f7d67c350b8d4e7dd071e24842a708ec87f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stroud, William J</creatorcontrib><creatorcontrib>Curry, Joan E</creatorcontrib><creatorcontrib>Cushman, John H</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stroud, William J</au><au>Curry, Joan E</au><au>Cushman, John H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary Condensation and Snap-off in Nanoscale Contacts</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2001-02-06</date><risdate>2001</risdate><volume>17</volume><issue>3</issue><spage>688</spage><epage>698</epage><pages>688-698</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>When a surface is placed in a vapor, several layers of molecules may adsorb depending on the intermolecular forces involved. As two such surfaces are brought together, a critical point is reached at which the gas condenses between the surfaces, forming a capillary across the gap. A cohesive force is associated with the condensed bridge. The reverse process wherein the capillary bridge degenerates as the surfaces are moved apart is called snap-off. These processes play a profound role on scales from the nano to the macro. We have studied this phenomenon via isostrain grand canonical Monte Carlo statistical mechanical simulations for Lennard-Jones fluids. Specifically, we have examined capillary condensation and snap-off between nanocontacts, infinite rectilinear nanowires, and finite rectilinear nanoplatelets, where macroscale concepts and theories are just about impossible to apply. These results are compared to condensation between infinite parallel plates. We discuss our results in terms of the Kelvin equation and van der Waals film-thickening model.</abstract><pub>American Chemical Society</pub><doi>10.1021/la0013143</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2001-02, Vol.17 (3), p.688-698
issn 0743-7463
1520-5827
language eng
recordid cdi_crossref_primary_10_1021_la0013143
source American Chemical Society Journals
title Capillary Condensation and Snap-off in Nanoscale Contacts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20Condensation%20and%20Snap-off%20in%20Nanoscale%20Contacts&rft.jtitle=Langmuir&rft.au=Stroud,%20William%20J&rft.date=2001-02-06&rft.volume=17&rft.issue=3&rft.spage=688&rft.epage=698&rft.pages=688-698&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la0013143&rft_dat=%3Cacs_cross%3Ed069205230%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true