A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes

We discuss a nanowire and nanotube formation mechanism in which axial screw dislocations provide self-perpetuating steps to enable one-dimensional (1D) crystal growth, unlike previously understood vapor−liquid−solid (VLS) or analogous metal-catalyzed growth. We initially found this mechanism in hier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2010-05, Vol.1 (9), p.1472-1480
Hauptverfasser: Jin, Song, Bierman, Matthew J., Morin, Stephen A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 9
container_start_page 1472
container_title The journal of physical chemistry letters
container_volume 1
creator Jin, Song
Bierman, Matthew J.
Morin, Stephen A.
description We discuss a nanowire and nanotube formation mechanism in which axial screw dislocations provide self-perpetuating steps to enable one-dimensional (1D) crystal growth, unlike previously understood vapor−liquid−solid (VLS) or analogous metal-catalyzed growth. We initially found this mechanism in hierarchical pine tree PbS nanowires with helically rotating branches. We further applied it to ZnO, demonstrating that screw dislocations can drive the spontaneous formation of nanotubes, and used classical crystal growth theory to confirm that their anisotropic 1D growth is driven by dislocations. Dislocation-driven growth should be general to many materials grown in vapor or solution and is underappreciated. It will create a new dimension in the rational synthesis of nanomaterials. The resulting complex hierarchical nanostructures can be useful for solar energy conversion, and our understanding will allow large-scale synthesis of 1D nanomaterials for practical applications.
doi_str_mv 10.1021/jz100288z
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jz100288z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d058634892</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-1d69c20c83f89bd3d7d9c5c55c8bd792e10f9ea869c8b997c555e0134310775c3</originalsourceid><addsrcrecordid>eNptkD9PwzAQxS0EEqUw8A28MDAYznFd22xV_4FUlYEyosixHeGojZGdEtFPT2hRxcB07-5-93R6CF1TuKOQ0ftqRwEyKXcnqEfVQBJBJT_9o8_RRUoVwFCBFD30NsJL1-JV61ODQ42Xug6tjw7PQtzoxof6Ab-Y6Foy8WkdzH5EJtF_uhrPY2ibdxzK41nCurb7rtkWLl2is1Kvk7v6rX30Opuuxo9k8Tx_Go8WRLOMN4TaoTIZGMlKqQrLrLDKcMO5kYUVKnMUSuW07ChZKCW6DXdA2YBREIIb1ke3B18TQ0rRlflH9Bsdv3IK-U8u-TGXjr05sNqkvArbWHef_cN9A5KUYhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes</title><source>ACS Publications</source><creator>Jin, Song ; Bierman, Matthew J. ; Morin, Stephen A.</creator><creatorcontrib>Jin, Song ; Bierman, Matthew J. ; Morin, Stephen A.</creatorcontrib><description>We discuss a nanowire and nanotube formation mechanism in which axial screw dislocations provide self-perpetuating steps to enable one-dimensional (1D) crystal growth, unlike previously understood vapor−liquid−solid (VLS) or analogous metal-catalyzed growth. We initially found this mechanism in hierarchical pine tree PbS nanowires with helically rotating branches. We further applied it to ZnO, demonstrating that screw dislocations can drive the spontaneous formation of nanotubes, and used classical crystal growth theory to confirm that their anisotropic 1D growth is driven by dislocations. Dislocation-driven growth should be general to many materials grown in vapor or solution and is underappreciated. It will create a new dimension in the rational synthesis of nanomaterials. The resulting complex hierarchical nanostructures can be useful for solar energy conversion, and our understanding will allow large-scale synthesis of 1D nanomaterials for practical applications.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/jz100288z</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2010-05, Vol.1 (9), p.1472-1480</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-1d69c20c83f89bd3d7d9c5c55c8bd792e10f9ea869c8b997c555e0134310775c3</citedby><cites>FETCH-LOGICAL-a325t-1d69c20c83f89bd3d7d9c5c55c8bd792e10f9ea869c8b997c555e0134310775c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jz100288z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jz100288z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Bierman, Matthew J.</creatorcontrib><creatorcontrib>Morin, Stephen A.</creatorcontrib><title>A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>We discuss a nanowire and nanotube formation mechanism in which axial screw dislocations provide self-perpetuating steps to enable one-dimensional (1D) crystal growth, unlike previously understood vapor−liquid−solid (VLS) or analogous metal-catalyzed growth. We initially found this mechanism in hierarchical pine tree PbS nanowires with helically rotating branches. We further applied it to ZnO, demonstrating that screw dislocations can drive the spontaneous formation of nanotubes, and used classical crystal growth theory to confirm that their anisotropic 1D growth is driven by dislocations. Dislocation-driven growth should be general to many materials grown in vapor or solution and is underappreciated. It will create a new dimension in the rational synthesis of nanomaterials. The resulting complex hierarchical nanostructures can be useful for solar energy conversion, and our understanding will allow large-scale synthesis of 1D nanomaterials for practical applications.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAQxS0EEqUw8A28MDAYznFd22xV_4FUlYEyosixHeGojZGdEtFPT2hRxcB07-5-93R6CF1TuKOQ0ftqRwEyKXcnqEfVQBJBJT_9o8_RRUoVwFCBFD30NsJL1-JV61ODQ42Xug6tjw7PQtzoxof6Ab-Y6Foy8WkdzH5EJtF_uhrPY2ibdxzK41nCurb7rtkWLl2is1Kvk7v6rX30Opuuxo9k8Tx_Go8WRLOMN4TaoTIZGMlKqQrLrLDKcMO5kYUVKnMUSuW07ChZKCW6DXdA2YBREIIb1ke3B18TQ0rRlflH9Bsdv3IK-U8u-TGXjr05sNqkvArbWHef_cN9A5KUYhQ</recordid><startdate>20100506</startdate><enddate>20100506</enddate><creator>Jin, Song</creator><creator>Bierman, Matthew J.</creator><creator>Morin, Stephen A.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100506</creationdate><title>A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes</title><author>Jin, Song ; Bierman, Matthew J. ; Morin, Stephen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-1d69c20c83f89bd3d7d9c5c55c8bd792e10f9ea869c8b997c555e0134310775c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Bierman, Matthew J.</creatorcontrib><creatorcontrib>Morin, Stephen A.</creatorcontrib><collection>CrossRef</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Song</au><au>Bierman, Matthew J.</au><au>Morin, Stephen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2010-05-06</date><risdate>2010</risdate><volume>1</volume><issue>9</issue><spage>1472</spage><epage>1480</epage><pages>1472-1480</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>We discuss a nanowire and nanotube formation mechanism in which axial screw dislocations provide self-perpetuating steps to enable one-dimensional (1D) crystal growth, unlike previously understood vapor−liquid−solid (VLS) or analogous metal-catalyzed growth. We initially found this mechanism in hierarchical pine tree PbS nanowires with helically rotating branches. We further applied it to ZnO, demonstrating that screw dislocations can drive the spontaneous formation of nanotubes, and used classical crystal growth theory to confirm that their anisotropic 1D growth is driven by dislocations. Dislocation-driven growth should be general to many materials grown in vapor or solution and is underappreciated. It will create a new dimension in the rational synthesis of nanomaterials. The resulting complex hierarchical nanostructures can be useful for solar energy conversion, and our understanding will allow large-scale synthesis of 1D nanomaterials for practical applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/jz100288z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2010-05, Vol.1 (9), p.1472-1480
issn 1948-7185
1948-7185
language eng
recordid cdi_crossref_primary_10_1021_jz100288z
source ACS Publications
title A New Twist on Nanowire Formation: Screw-Dislocation-Driven Growth of Nanowires and Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Twist%20on%20Nanowire%20Formation:%20Screw-Dislocation-Driven%20Growth%20of%20Nanowires%20and%20Nanotubes&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Jin,%20Song&rft.date=2010-05-06&rft.volume=1&rft.issue=9&rft.spage=1472&rft.epage=1480&rft.pages=1472-1480&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/jz100288z&rft_dat=%3Cacs_cross%3Ed058634892%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true