Investigations of the Force−Distance Behavior in Polar Liquids

Scanning force microscopy (force−distance curves) is employed to study the interaction of two SiO x surfaces in a homologous series of hydrogen-bonded liquids. The force−distance behavior and adhesion, determined by solvation effects as well as van der Waals and electrostatic forces, vary systematic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 1999-08, Vol.103 (32), p.6741-6745
Hauptverfasser: Boehnke, U.-C, Brodowsky, H. M, Groothues, H, Kremer, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6745
container_issue 32
container_start_page 6741
container_title The journal of physical chemistry. B
container_volume 103
creator Boehnke, U.-C
Brodowsky, H. M
Groothues, H
Kremer, F
description Scanning force microscopy (force−distance curves) is employed to study the interaction of two SiO x surfaces in a homologous series of hydrogen-bonded liquids. The force−distance behavior and adhesion, determined by solvation effects as well as van der Waals and electrostatic forces, vary systematically with the structure of the liquid molecule. A model is proposed which relates the molecular arrangement in the confining geometry of the tip and the underlying surface to the number of hydroxyl groups of the solvents (hydrogen-bonded networks). For a quantitative evaluation, the spring constant is calculated from the geometric parameters and the eigenfrequencies of the cantilever.
doi_str_mv 10.1021/jp983780v
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp983780v</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c959729436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a255t-68aa8075f881198fc54d00e8eafb950713916b208699a236e8609c408a5996403</originalsourceid><addsrcrecordid>eNptj81OAjEUhRujiYgufINuXLgYve3QTrtTQH4iiSSi2-YydKSIU2wHom_g2kf0SRwDYeXi5tzFl5PzEXLO4IoBZ9eLlVZppmBzQBpMcEjqyw53v2Qgj8lJjAsALriSDXIzLDc2Vu4FK-fLSH1Bq7mlPR9y-_P13XWxwjK3tG3nuHE-UFfSsV9ioCP3vnazeEqOClxGe7bLJnnq3U06g2T00B92bkcJciGqRCpEBZkolGJMqyIXrRmAVRaLqRaQsVQzOeWgpNbIU2mVBJ23QKHQWrYgbZLLbW8efIzBFmYV3BuGT8PA_KmbvXrNJlu2Xm8_9iCGVyOzNBNmMn40bfXcTwf32vRq_mLLYx7Nwq9DWZv80_sLoEJmYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigations of the Force−Distance Behavior in Polar Liquids</title><source>American Chemical Society (ACS) Journals</source><creator>Boehnke, U.-C ; Brodowsky, H. M ; Groothues, H ; Kremer, F</creator><creatorcontrib>Boehnke, U.-C ; Brodowsky, H. M ; Groothues, H ; Kremer, F</creatorcontrib><description>Scanning force microscopy (force−distance curves) is employed to study the interaction of two SiO x surfaces in a homologous series of hydrogen-bonded liquids. The force−distance behavior and adhesion, determined by solvation effects as well as van der Waals and electrostatic forces, vary systematically with the structure of the liquid molecule. A model is proposed which relates the molecular arrangement in the confining geometry of the tip and the underlying surface to the number of hydroxyl groups of the solvents (hydrogen-bonded networks). For a quantitative evaluation, the spring constant is calculated from the geometric parameters and the eigenfrequencies of the cantilever.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp983780v</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 1999-08, Vol.103 (32), p.6741-6745</ispartof><rights>Copyright © 1999 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a255t-68aa8075f881198fc54d00e8eafb950713916b208699a236e8609c408a5996403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp983780v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp983780v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Boehnke, U.-C</creatorcontrib><creatorcontrib>Brodowsky, H. M</creatorcontrib><creatorcontrib>Groothues, H</creatorcontrib><creatorcontrib>Kremer, F</creatorcontrib><title>Investigations of the Force−Distance Behavior in Polar Liquids</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Scanning force microscopy (force−distance curves) is employed to study the interaction of two SiO x surfaces in a homologous series of hydrogen-bonded liquids. The force−distance behavior and adhesion, determined by solvation effects as well as van der Waals and electrostatic forces, vary systematically with the structure of the liquid molecule. A model is proposed which relates the molecular arrangement in the confining geometry of the tip and the underlying surface to the number of hydroxyl groups of the solvents (hydrogen-bonded networks). For a quantitative evaluation, the spring constant is calculated from the geometric parameters and the eigenfrequencies of the cantilever.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptj81OAjEUhRujiYgufINuXLgYve3QTrtTQH4iiSSi2-YydKSIU2wHom_g2kf0SRwDYeXi5tzFl5PzEXLO4IoBZ9eLlVZppmBzQBpMcEjqyw53v2Qgj8lJjAsALriSDXIzLDc2Vu4FK-fLSH1Bq7mlPR9y-_P13XWxwjK3tG3nuHE-UFfSsV9ioCP3vnazeEqOClxGe7bLJnnq3U06g2T00B92bkcJciGqRCpEBZkolGJMqyIXrRmAVRaLqRaQsVQzOeWgpNbIU2mVBJ23QKHQWrYgbZLLbW8efIzBFmYV3BuGT8PA_KmbvXrNJlu2Xm8_9iCGVyOzNBNmMn40bfXcTwf32vRq_mLLYx7Nwq9DWZv80_sLoEJmYA</recordid><startdate>19990812</startdate><enddate>19990812</enddate><creator>Boehnke, U.-C</creator><creator>Brodowsky, H. M</creator><creator>Groothues, H</creator><creator>Kremer, F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990812</creationdate><title>Investigations of the Force−Distance Behavior in Polar Liquids</title><author>Boehnke, U.-C ; Brodowsky, H. M ; Groothues, H ; Kremer, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a255t-68aa8075f881198fc54d00e8eafb950713916b208699a236e8609c408a5996403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehnke, U.-C</creatorcontrib><creatorcontrib>Brodowsky, H. M</creatorcontrib><creatorcontrib>Groothues, H</creatorcontrib><creatorcontrib>Kremer, F</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehnke, U.-C</au><au>Brodowsky, H. M</au><au>Groothues, H</au><au>Kremer, F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigations of the Force−Distance Behavior in Polar Liquids</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>1999-08-12</date><risdate>1999</risdate><volume>103</volume><issue>32</issue><spage>6741</spage><epage>6745</epage><pages>6741-6745</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Scanning force microscopy (force−distance curves) is employed to study the interaction of two SiO x surfaces in a homologous series of hydrogen-bonded liquids. The force−distance behavior and adhesion, determined by solvation effects as well as van der Waals and electrostatic forces, vary systematically with the structure of the liquid molecule. A model is proposed which relates the molecular arrangement in the confining geometry of the tip and the underlying surface to the number of hydroxyl groups of the solvents (hydrogen-bonded networks). For a quantitative evaluation, the spring constant is calculated from the geometric parameters and the eigenfrequencies of the cantilever.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp983780v</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 1999-08, Vol.103 (32), p.6741-6745
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp983780v
source American Chemical Society (ACS) Journals
title Investigations of the Force−Distance Behavior in Polar Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigations%20of%20the%20Force%E2%88%92Distance%20Behavior%20in%20Polar%20Liquids&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Boehnke,%20U.-C&rft.date=1999-08-12&rft.volume=103&rft.issue=32&rft.spage=6741&rft.epage=6745&rft.pages=6741-6745&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp983780v&rft_dat=%3Cacs_cross%3Ec959729436%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true