Premelting Dynamics:  Geometry and Interactions

Recent advances in understanding the evolution of interfacially melted water films are discussed from several perspectives. The essential mechanism is the motion of thin films under the influence of thermomolecular pressure gradients. The mechanism is common to volatile liquid films at the interface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 1997-08, Vol.101 (32), p.6137-6141
Hauptverfasser: Wettlaufer, J. S., Worster, M. G., Wilen, L. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6141
container_issue 32
container_start_page 6137
container_title The journal of physical chemistry. B
container_volume 101
creator Wettlaufer, J. S.
Worster, M. G.
Wilen, L. A.
description Recent advances in understanding the evolution of interfacially melted water films are discussed from several perspectives. The essential mechanism is the motion of thin films under the influence of thermomolecular pressure gradients. The mechanism is common to volatile liquid films at the interface between a solid and its vapor or a solid and an uncorrugated inert substrate, and the dynamics is theoretically similar to the wetting of an uncorrugated inert substrate by a nonvolatile liquid. New theoretical treatments of this process focus on the intermolecular origin of the thermomolecular pressure gradient, its time dependence, and the role of substrate geometry. Strikingly different results obtain by varying these three features. The experimental realization of these dynamics involves ice single crystals against a polymer interface.
doi_str_mv 10.1021/jp9632201
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp9632201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_R4NGKBXG_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-9c454a3d5cbe2f151c9461477168f0e52db9d0edf44f9f8b82c665425c5e41a83</originalsourceid><addsrcrecordid>eNptj7FOwzAYhC0EEqUw8AZZGBgC_h3bSdigQKioIIIisVmOY6OEJqlsI5GNldfkSQhK1YnhdDd8OulD6BjwGWAC5_U65REhGHbQBBjB4ZB4d7M5YL6PDpyrMSaMJHyCILe60StftW_Bdd_KplLu4ufrO8h012hv-0C2ZTBvvbZS-apr3SHaM3Ll9NGmp-jl9mY5uwsXj9l8drkIZRRhH6aKMiqjkqlCEwMMVEo50DgGnhisGSmLtMS6NJSa1CRFQhTnjBKmmKYgk2iKTsdfZTvnrDZibatG2l4AFn-uYus6sOHIVs7rzy0o7bvgcRQzscyfxRN9yO6vXjORD_zJyEvlRN192HYw-ef3F_FMYXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Premelting Dynamics:  Geometry and Interactions</title><source>American Chemical Society Journals</source><creator>Wettlaufer, J. S. ; Worster, M. G. ; Wilen, L. A.</creator><creatorcontrib>Wettlaufer, J. S. ; Worster, M. G. ; Wilen, L. A.</creatorcontrib><description>Recent advances in understanding the evolution of interfacially melted water films are discussed from several perspectives. The essential mechanism is the motion of thin films under the influence of thermomolecular pressure gradients. The mechanism is common to volatile liquid films at the interface between a solid and its vapor or a solid and an uncorrugated inert substrate, and the dynamics is theoretically similar to the wetting of an uncorrugated inert substrate by a nonvolatile liquid. New theoretical treatments of this process focus on the intermolecular origin of the thermomolecular pressure gradient, its time dependence, and the role of substrate geometry. Strikingly different results obtain by varying these three features. The experimental realization of these dynamics involves ice single crystals against a polymer interface.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp9632201</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 1997-08, Vol.101 (32), p.6137-6141</ispartof><rights>Copyright © 1997 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-9c454a3d5cbe2f151c9461477168f0e52db9d0edf44f9f8b82c665425c5e41a83</citedby><cites>FETCH-LOGICAL-a330t-9c454a3d5cbe2f151c9461477168f0e52db9d0edf44f9f8b82c665425c5e41a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp9632201$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp9632201$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wettlaufer, J. S.</creatorcontrib><creatorcontrib>Worster, M. G.</creatorcontrib><creatorcontrib>Wilen, L. A.</creatorcontrib><title>Premelting Dynamics:  Geometry and Interactions</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Recent advances in understanding the evolution of interfacially melted water films are discussed from several perspectives. The essential mechanism is the motion of thin films under the influence of thermomolecular pressure gradients. The mechanism is common to volatile liquid films at the interface between a solid and its vapor or a solid and an uncorrugated inert substrate, and the dynamics is theoretically similar to the wetting of an uncorrugated inert substrate by a nonvolatile liquid. New theoretical treatments of this process focus on the intermolecular origin of the thermomolecular pressure gradient, its time dependence, and the role of substrate geometry. Strikingly different results obtain by varying these three features. The experimental realization of these dynamics involves ice single crystals against a polymer interface.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptj7FOwzAYhC0EEqUw8AZZGBgC_h3bSdigQKioIIIisVmOY6OEJqlsI5GNldfkSQhK1YnhdDd8OulD6BjwGWAC5_U65REhGHbQBBjB4ZB4d7M5YL6PDpyrMSaMJHyCILe60StftW_Bdd_KplLu4ufrO8h012hv-0C2ZTBvvbZS-apr3SHaM3Ll9NGmp-jl9mY5uwsXj9l8drkIZRRhH6aKMiqjkqlCEwMMVEo50DgGnhisGSmLtMS6NJSa1CRFQhTnjBKmmKYgk2iKTsdfZTvnrDZibatG2l4AFn-uYus6sOHIVs7rzy0o7bvgcRQzscyfxRN9yO6vXjORD_zJyEvlRN192HYw-ef3F_FMYXU</recordid><startdate>19970807</startdate><enddate>19970807</enddate><creator>Wettlaufer, J. S.</creator><creator>Worster, M. G.</creator><creator>Wilen, L. A.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970807</creationdate><title>Premelting Dynamics:  Geometry and Interactions</title><author>Wettlaufer, J. S. ; Worster, M. G. ; Wilen, L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-9c454a3d5cbe2f151c9461477168f0e52db9d0edf44f9f8b82c665425c5e41a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wettlaufer, J. S.</creatorcontrib><creatorcontrib>Worster, M. G.</creatorcontrib><creatorcontrib>Wilen, L. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wettlaufer, J. S.</au><au>Worster, M. G.</au><au>Wilen, L. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Premelting Dynamics:  Geometry and Interactions</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>1997-08-07</date><risdate>1997</risdate><volume>101</volume><issue>32</issue><spage>6137</spage><epage>6141</epage><pages>6137-6141</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Recent advances in understanding the evolution of interfacially melted water films are discussed from several perspectives. The essential mechanism is the motion of thin films under the influence of thermomolecular pressure gradients. The mechanism is common to volatile liquid films at the interface between a solid and its vapor or a solid and an uncorrugated inert substrate, and the dynamics is theoretically similar to the wetting of an uncorrugated inert substrate by a nonvolatile liquid. New theoretical treatments of this process focus on the intermolecular origin of the thermomolecular pressure gradient, its time dependence, and the role of substrate geometry. Strikingly different results obtain by varying these three features. The experimental realization of these dynamics involves ice single crystals against a polymer interface.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp9632201</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 1997-08, Vol.101 (32), p.6137-6141
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp9632201
source American Chemical Society Journals
title Premelting Dynamics:  Geometry and Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Premelting%20Dynamics:%E2%80%89%20Geometry%20and%20Interactions&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Wettlaufer,%20J.%20S.&rft.date=1997-08-07&rft.volume=101&rft.issue=32&rft.spage=6137&rft.epage=6141&rft.pages=6137-6141&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp9632201&rft_dat=%3Cistex_cross%3Eark_67375_TPS_R4NGKBXG_P%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true