General Brönsted Acid Behavior of Porous Silicon:  A Mechanistic Evaluation of Proton-Gated Quenching of Photoemission from Oxide-Coated Porous Silicon

Photoinduced visible light emission from porous silicon can be reversibly quenched by a wide variety of chemical species. The growth of a thin layer of oxide on the porous silicon surface disrupts the quenching ability of most species, narrowing down the number of quenchers to include primarily thos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 1997-04, Vol.101 (14), p.2702-2708
Hauptverfasser: Kelly, Michael T, Chun, Jonathan K. M, Bocarsly, Andrew B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2708
container_issue 14
container_start_page 2702
container_title The journal of physical chemistry. B
container_volume 101
creator Kelly, Michael T
Chun, Jonathan K. M
Bocarsly, Andrew B
description Photoinduced visible light emission from porous silicon can be reversibly quenched by a wide variety of chemical species. The growth of a thin layer of oxide on the porous silicon surface disrupts the quenching ability of most species, narrowing down the number of quenchers to include primarily those which act as Brönsted bases. Electron paramagnetic resonance spectroscopy, infrared spectroscopy, photoluminescence data, and surface chemistry suggest a quenching mechanism which involves the extraction of a nonspecifically attached proton in the oxide layer upon exposure to base. This proton is loosely affiliated with a surface defect of the Pb type. This defect serves as a hole trap in the absence of a proton providing a nonradiative relaxation pathway. However, when a proton is present in the oxide layer, Coulombic interactions force the hole trap into a state which falls below the bandgap, allowing for efficient radiative recombination of electron−hole pairs. The electron paramagnetic resonance spectroscopy data also demonstrate that there are at least two distinct mechanisms of luminescence quenching of porous silicon.
doi_str_mv 10.1021/jp962750u
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp962750u</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b035814496</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-90488b6fcbd40a240922c3655d2219af504e0afc65cb03804abbb513ea7efc093</originalsourceid><addsrcrecordid>eNptkM1OAjEUhSdGExFd-AbduHAx2namHcYdIKIRAgjGxE3T6XSkCC1pZwju3PoKPogv4Jv4JA4_ITFxcXNvcr6cm3M87xTBCwQxupzMY4ojAos9r4IIhn450f72pgjSQ-_IuQmEmOAarXifbaml5VPQsN9f2uUyBXWhUtCQY75QxgKTgb6xpnBgqKZKGH318_4B6qArxZhr5XIlQGvBpwXPldFr3JrcaL_NV2aDQmoxVvplrYxLRc6Ucys0s2YGekuVSr9p1vDfR8feQcanTp5sd9V7vGmNmrd-p9e-a9Y7Pg8oyv0YhrVaQjORpCHkOIQxxiKghKQYo5hnBIYS8kxQIhIY1GDIkyQhKJA8kpmAcVD1zje-whrnrMzY3KoZt28MQbYqle1KLVl_w5bB5XIHcvvKaBREhI36Q3Y9uG8-P3Sf2LDkzzY8F45NTGF1meQf31-xgImO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>General Brönsted Acid Behavior of Porous Silicon:  A Mechanistic Evaluation of Proton-Gated Quenching of Photoemission from Oxide-Coated Porous Silicon</title><source>ACS Publications</source><creator>Kelly, Michael T ; Chun, Jonathan K. M ; Bocarsly, Andrew B</creator><creatorcontrib>Kelly, Michael T ; Chun, Jonathan K. M ; Bocarsly, Andrew B</creatorcontrib><description>Photoinduced visible light emission from porous silicon can be reversibly quenched by a wide variety of chemical species. The growth of a thin layer of oxide on the porous silicon surface disrupts the quenching ability of most species, narrowing down the number of quenchers to include primarily those which act as Brönsted bases. Electron paramagnetic resonance spectroscopy, infrared spectroscopy, photoluminescence data, and surface chemistry suggest a quenching mechanism which involves the extraction of a nonspecifically attached proton in the oxide layer upon exposure to base. This proton is loosely affiliated with a surface defect of the Pb type. This defect serves as a hole trap in the absence of a proton providing a nonradiative relaxation pathway. However, when a proton is present in the oxide layer, Coulombic interactions force the hole trap into a state which falls below the bandgap, allowing for efficient radiative recombination of electron−hole pairs. The electron paramagnetic resonance spectroscopy data also demonstrate that there are at least two distinct mechanisms of luminescence quenching of porous silicon.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp962750u</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 1997-04, Vol.101 (14), p.2702-2708</ispartof><rights>Copyright © 1997 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-90488b6fcbd40a240922c3655d2219af504e0afc65cb03804abbb513ea7efc093</citedby><cites>FETCH-LOGICAL-a361t-90488b6fcbd40a240922c3655d2219af504e0afc65cb03804abbb513ea7efc093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp962750u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp962750u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kelly, Michael T</creatorcontrib><creatorcontrib>Chun, Jonathan K. M</creatorcontrib><creatorcontrib>Bocarsly, Andrew B</creatorcontrib><title>General Brönsted Acid Behavior of Porous Silicon:  A Mechanistic Evaluation of Proton-Gated Quenching of Photoemission from Oxide-Coated Porous Silicon</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Photoinduced visible light emission from porous silicon can be reversibly quenched by a wide variety of chemical species. The growth of a thin layer of oxide on the porous silicon surface disrupts the quenching ability of most species, narrowing down the number of quenchers to include primarily those which act as Brönsted bases. Electron paramagnetic resonance spectroscopy, infrared spectroscopy, photoluminescence data, and surface chemistry suggest a quenching mechanism which involves the extraction of a nonspecifically attached proton in the oxide layer upon exposure to base. This proton is loosely affiliated with a surface defect of the Pb type. This defect serves as a hole trap in the absence of a proton providing a nonradiative relaxation pathway. However, when a proton is present in the oxide layer, Coulombic interactions force the hole trap into a state which falls below the bandgap, allowing for efficient radiative recombination of electron−hole pairs. The electron paramagnetic resonance spectroscopy data also demonstrate that there are at least two distinct mechanisms of luminescence quenching of porous silicon.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptkM1OAjEUhSdGExFd-AbduHAx2namHcYdIKIRAgjGxE3T6XSkCC1pZwju3PoKPogv4Jv4JA4_ITFxcXNvcr6cm3M87xTBCwQxupzMY4ojAos9r4IIhn450f72pgjSQ-_IuQmEmOAarXifbaml5VPQsN9f2uUyBXWhUtCQY75QxgKTgb6xpnBgqKZKGH318_4B6qArxZhr5XIlQGvBpwXPldFr3JrcaL_NV2aDQmoxVvplrYxLRc6Ucys0s2YGekuVSr9p1vDfR8feQcanTp5sd9V7vGmNmrd-p9e-a9Y7Pg8oyv0YhrVaQjORpCHkOIQxxiKghKQYo5hnBIYS8kxQIhIY1GDIkyQhKJA8kpmAcVD1zje-whrnrMzY3KoZt28MQbYqle1KLVl_w5bB5XIHcvvKaBREhI36Q3Y9uG8-P3Sf2LDkzzY8F45NTGF1meQf31-xgImO</recordid><startdate>19970403</startdate><enddate>19970403</enddate><creator>Kelly, Michael T</creator><creator>Chun, Jonathan K. M</creator><creator>Bocarsly, Andrew B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970403</creationdate><title>General Brönsted Acid Behavior of Porous Silicon:  A Mechanistic Evaluation of Proton-Gated Quenching of Photoemission from Oxide-Coated Porous Silicon</title><author>Kelly, Michael T ; Chun, Jonathan K. M ; Bocarsly, Andrew B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-90488b6fcbd40a240922c3655d2219af504e0afc65cb03804abbb513ea7efc093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Michael T</creatorcontrib><creatorcontrib>Chun, Jonathan K. M</creatorcontrib><creatorcontrib>Bocarsly, Andrew B</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Michael T</au><au>Chun, Jonathan K. M</au><au>Bocarsly, Andrew B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Brönsted Acid Behavior of Porous Silicon:  A Mechanistic Evaluation of Proton-Gated Quenching of Photoemission from Oxide-Coated Porous Silicon</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>1997-04-03</date><risdate>1997</risdate><volume>101</volume><issue>14</issue><spage>2702</spage><epage>2708</epage><pages>2702-2708</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Photoinduced visible light emission from porous silicon can be reversibly quenched by a wide variety of chemical species. The growth of a thin layer of oxide on the porous silicon surface disrupts the quenching ability of most species, narrowing down the number of quenchers to include primarily those which act as Brönsted bases. Electron paramagnetic resonance spectroscopy, infrared spectroscopy, photoluminescence data, and surface chemistry suggest a quenching mechanism which involves the extraction of a nonspecifically attached proton in the oxide layer upon exposure to base. This proton is loosely affiliated with a surface defect of the Pb type. This defect serves as a hole trap in the absence of a proton providing a nonradiative relaxation pathway. However, when a proton is present in the oxide layer, Coulombic interactions force the hole trap into a state which falls below the bandgap, allowing for efficient radiative recombination of electron−hole pairs. The electron paramagnetic resonance spectroscopy data also demonstrate that there are at least two distinct mechanisms of luminescence quenching of porous silicon.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp962750u</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 1997-04, Vol.101 (14), p.2702-2708
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp962750u
source ACS Publications
title General Brönsted Acid Behavior of Porous Silicon:  A Mechanistic Evaluation of Proton-Gated Quenching of Photoemission from Oxide-Coated Porous Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Br%C3%B6nsted%20Acid%20Behavior%20of%20Porous%20Silicon:%E2%80%89%20A%20Mechanistic%20Evaluation%20of%20Proton-Gated%20Quenching%20of%20Photoemission%20from%20Oxide-Coated%20Porous%20Silicon&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Kelly,%20Michael%20T&rft.date=1997-04-03&rft.volume=101&rft.issue=14&rft.spage=2702&rft.epage=2708&rft.pages=2702-2708&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp962750u&rft_dat=%3Cacs_cross%3Eb035814496%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true