Branching Ratios in Activated Systems
Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distrib...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 1997-01, Vol.101 (1), p.19-24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 101 |
creator | Craig, Stephen L Zhong, Meili Choo, Bryan Brauman, John I |
description | Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory. |
doi_str_mv | 10.1021/jp961665j |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp961665j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_R69S0BDP_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</originalsourceid><addsrcrecordid>eNptjztPwzAYRS0EEqUw8A-ydGAwfH4mHtvylCoRNWW2bMeBBJpUdkD03xMU1Inp3uHo6h6ELglcE6DkptkpSaQUzRGaEEEBC0rE8dAhU1hIpk7RWYwNABBG-QTNFsG07q1uX5O16esuJnWbzF1ff5nel0mxj73fxnN0UpmP6C_-cope7u82y0e8en54Ws5X2FAlemxLsBlQW_nKcEk5yZzMTJYCMDBEGMk8ZYwrQR1hTlorOHGpBGF5aUvm2RRdjbsudDEGX-ldqLcm7DUB_eunD34Di0e2Hi5-H0AT3rVMWSr0Ji_0WqoCFre5zgd-NvLGRd10n6EdTP7Z_QHAmlxe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Branching Ratios in Activated Systems</title><source>American Chemical Society Journals</source><creator>Craig, Stephen L ; Zhong, Meili ; Choo, Bryan ; Brauman, John I</creator><creatorcontrib>Craig, Stephen L ; Zhong, Meili ; Choo, Bryan ; Brauman, John I</creatorcontrib><description>Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp961665j</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 1997-01, Vol.101 (1), p.19-24</ispartof><rights>Copyright © 1997 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</citedby><cites>FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp961665j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp961665j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Craig, Stephen L</creatorcontrib><creatorcontrib>Zhong, Meili</creatorcontrib><creatorcontrib>Choo, Bryan</creatorcontrib><creatorcontrib>Brauman, John I</creatorcontrib><title>Branching Ratios in Activated Systems</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptjztPwzAYRS0EEqUw8A-ydGAwfH4mHtvylCoRNWW2bMeBBJpUdkD03xMU1Inp3uHo6h6ELglcE6DkptkpSaQUzRGaEEEBC0rE8dAhU1hIpk7RWYwNABBG-QTNFsG07q1uX5O16esuJnWbzF1ff5nel0mxj73fxnN0UpmP6C_-cope7u82y0e8en54Ws5X2FAlemxLsBlQW_nKcEk5yZzMTJYCMDBEGMk8ZYwrQR1hTlorOHGpBGF5aUvm2RRdjbsudDEGX-ldqLcm7DUB_eunD34Di0e2Hi5-H0AT3rVMWSr0Ji_0WqoCFre5zgd-NvLGRd10n6EdTP7Z_QHAmlxe</recordid><startdate>19970102</startdate><enddate>19970102</enddate><creator>Craig, Stephen L</creator><creator>Zhong, Meili</creator><creator>Choo, Bryan</creator><creator>Brauman, John I</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970102</creationdate><title>Branching Ratios in Activated Systems</title><author>Craig, Stephen L ; Zhong, Meili ; Choo, Bryan ; Brauman, John I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craig, Stephen L</creatorcontrib><creatorcontrib>Zhong, Meili</creatorcontrib><creatorcontrib>Choo, Bryan</creatorcontrib><creatorcontrib>Brauman, John I</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, Stephen L</au><au>Zhong, Meili</au><au>Choo, Bryan</au><au>Brauman, John I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branching Ratios in Activated Systems</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>1997-01-02</date><risdate>1997</risdate><volume>101</volume><issue>1</issue><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp961665j</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 1997-01, Vol.101 (1), p.19-24 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp961665j |
source | American Chemical Society Journals |
title | Branching Ratios in Activated Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branching%20Ratios%20in%20Activated%20Systems&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Craig,%20Stephen%20L&rft.date=1997-01-02&rft.volume=101&rft.issue=1&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp961665j&rft_dat=%3Cistex_cross%3Eark_67375_TPS_R69S0BDP_P%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |