Branching Ratios in Activated Systems

Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 1997-01, Vol.101 (1), p.19-24
Hauptverfasser: Craig, Stephen L, Zhong, Meili, Choo, Bryan, Brauman, John I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 19
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 101
creator Craig, Stephen L
Zhong, Meili
Choo, Bryan
Brauman, John I
description Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory.
doi_str_mv 10.1021/jp961665j
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp961665j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_R69S0BDP_P</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</originalsourceid><addsrcrecordid>eNptjztPwzAYRS0EEqUw8A-ydGAwfH4mHtvylCoRNWW2bMeBBJpUdkD03xMU1Inp3uHo6h6ELglcE6DkptkpSaQUzRGaEEEBC0rE8dAhU1hIpk7RWYwNABBG-QTNFsG07q1uX5O16esuJnWbzF1ff5nel0mxj73fxnN0UpmP6C_-cope7u82y0e8en54Ws5X2FAlemxLsBlQW_nKcEk5yZzMTJYCMDBEGMk8ZYwrQR1hTlorOHGpBGF5aUvm2RRdjbsudDEGX-ldqLcm7DUB_eunD34Di0e2Hi5-H0AT3rVMWSr0Ji_0WqoCFre5zgd-NvLGRd10n6EdTP7Z_QHAmlxe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Branching Ratios in Activated Systems</title><source>American Chemical Society Journals</source><creator>Craig, Stephen L ; Zhong, Meili ; Choo, Bryan ; Brauman, John I</creator><creatorcontrib>Craig, Stephen L ; Zhong, Meili ; Choo, Bryan ; Brauman, John I</creatorcontrib><description>Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp961665j</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 1997-01, Vol.101 (1), p.19-24</ispartof><rights>Copyright © 1997 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</citedby><cites>FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp961665j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp961665j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Craig, Stephen L</creatorcontrib><creatorcontrib>Zhong, Meili</creatorcontrib><creatorcontrib>Choo, Bryan</creatorcontrib><creatorcontrib>Brauman, John I</creatorcontrib><title>Branching Ratios in Activated Systems</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNptjztPwzAYRS0EEqUw8A-ydGAwfH4mHtvylCoRNWW2bMeBBJpUdkD03xMU1Inp3uHo6h6ELglcE6DkptkpSaQUzRGaEEEBC0rE8dAhU1hIpk7RWYwNABBG-QTNFsG07q1uX5O16esuJnWbzF1ff5nel0mxj73fxnN0UpmP6C_-cope7u82y0e8en54Ws5X2FAlemxLsBlQW_nKcEk5yZzMTJYCMDBEGMk8ZYwrQR1hTlorOHGpBGF5aUvm2RRdjbsudDEGX-ldqLcm7DUB_eunD34Di0e2Hi5-H0AT3rVMWSr0Ji_0WqoCFre5zgd-NvLGRd10n6EdTP7Z_QHAmlxe</recordid><startdate>19970102</startdate><enddate>19970102</enddate><creator>Craig, Stephen L</creator><creator>Zhong, Meili</creator><creator>Choo, Bryan</creator><creator>Brauman, John I</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970102</creationdate><title>Branching Ratios in Activated Systems</title><author>Craig, Stephen L ; Zhong, Meili ; Choo, Bryan ; Brauman, John I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-bd0b802bfefa462418c68a870030a15a63e2334952c13c6bb541c7605b4dbd3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craig, Stephen L</creatorcontrib><creatorcontrib>Zhong, Meili</creatorcontrib><creatorcontrib>Choo, Bryan</creatorcontrib><creatorcontrib>Brauman, John I</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, Stephen L</au><au>Zhong, Meili</au><au>Choo, Bryan</au><au>Brauman, John I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Branching Ratios in Activated Systems</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>1997-01-02</date><risdate>1997</risdate><volume>101</volume><issue>1</issue><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Branching between reaction channels in activated systems is often observed to vary with changes in the potential energy surface as Δln(k 1/k 2) ∝ Δ(Δ − Δ ). RRKM calculations demonstrate that in many, but not all, cases the log−linear relationship accurately describes branching in nonthermal distributions of reactants with energies well above the threshold for reaction. The origin of this relationship and conditions necessary for its validity can be understood in terms of quantum RRK theory.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp961665j</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 1997-01, Vol.101 (1), p.19-24
issn 1089-5639
1520-5215
language eng
recordid cdi_crossref_primary_10_1021_jp961665j
source American Chemical Society Journals
title Branching Ratios in Activated Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Branching%20Ratios%20in%20Activated%20Systems&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Craig,%20Stephen%20L&rft.date=1997-01-02&rft.volume=101&rft.issue=1&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp961665j&rft_dat=%3Cistex_cross%3Eark_67375_TPS_R69S0BDP_P%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true