Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy
We are reporting ultrafast charge carrier and charge transfer dynamics of the CdTe quantum dot (QD) and type II CdTe/CdS core−shell QD materials with different shell (CdS) thicknesses. Herein, we have synthesized CdTe and CdTe/CdS core−shell quantum dots by using 3-mercaptopropionic acid as a cappin...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2010-01, Vol.114 (3), p.1460-1466 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1466 |
---|---|
container_issue | 3 |
container_start_page | 1460 |
container_title | Journal of physical chemistry. C |
container_volume | 114 |
creator | Rawalekar, Sachin Kaniyankandy, Sreejith Verma, Sandeep Ghosh, Hirendra N |
description | We are reporting ultrafast charge carrier and charge transfer dynamics of the CdTe quantum dot (QD) and type II CdTe/CdS core−shell QD materials with different shell (CdS) thicknesses. Herein, we have synthesized CdTe and CdTe/CdS core−shell quantum dots by using 3-mercaptopropionic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdTe QD and CdTe/CdS core−shell QD materials. Time-resolved emission studies indicate a longer emission lifetime of the CdTe/CdS core−shell as compared to CdTe QD materials, where in both cases only CdTe gets excited. We have carried out femtosecond transient absorption studies of these QD and core−shell materials by exciting them with 400 nm laser light and monitoring the transients in the visible to near-IR region to study charge carrier and charge transfer dynamics in the ultrafast time scale. On laser excitation, electron−hole pairs are generated which are confirmed by induced absorption signal for the charge carriers in the visible and near-IR region and an immediate bleach at excitonic position for both QD and QD core−shell. The carrier relaxation was found to be slower and the carrier lifetime was found to be longer in the QD core−shell as compared to the QD indicating charge transfer from core to shell. Carrier quenching studies have been carried out for both CdTe and CdTe/CdS by using benzoquinone (BQ, electron quencher) and Pyridine (Py, hole quencher) to assign the different relaxation processes. Details about the relaxation of hot carriers and the quenching effect on the relaxation dynamic of the charge carriers have been discussed for both QD and core−shell nanostructures. |
doi_str_mv | 10.1021/jp909118c |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp909118c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a58757981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-248c882fac10c72c934f3ddae8c6c2251552b0ddc764687c0ba1291ab7a2a88a3</originalsourceid><addsrcrecordid>eNptkEFOwzAURC0EEqWw4AbesGARajtJ4yyrlAJSJQRp19GP7dBUSRzZjkRu0DVH4GichNBCV6z-SDN68zUIXVNyRwmjk20bk5hSLk7QiMY-86IgDE-POojO0YW1W0JCn1B_hD7XlTNQgHU42YB5UzgBY0pl8Kuq4B1cqRsMjfxzVwYaWwz2vG-gLoXFusCJXKlJIlOcaKO-dh_pRlUVfumgcV2N59pZDBanrpOlkjjv8ULVTlsl9ADeE0vVODzLrTbtvjFtlXBGW6Hb_hKdFVBZdfV7x2i9uF8lj97y-eEpmS098FnoPBZwwTkrQFAiIiZiPyh8KUFxMRWMhTQMWU6kFNE0mPJIkBwoiynkETDgHPwxuj1wxVBsjSqy1pQ1mD6jJPsZNzuOO2RvDlkQNtvqzjTDZ__kvgHrtnyv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy</title><source>ACS Publications</source><creator>Rawalekar, Sachin ; Kaniyankandy, Sreejith ; Verma, Sandeep ; Ghosh, Hirendra N</creator><creatorcontrib>Rawalekar, Sachin ; Kaniyankandy, Sreejith ; Verma, Sandeep ; Ghosh, Hirendra N</creatorcontrib><description>We are reporting ultrafast charge carrier and charge transfer dynamics of the CdTe quantum dot (QD) and type II CdTe/CdS core−shell QD materials with different shell (CdS) thicknesses. Herein, we have synthesized CdTe and CdTe/CdS core−shell quantum dots by using 3-mercaptopropionic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdTe QD and CdTe/CdS core−shell QD materials. Time-resolved emission studies indicate a longer emission lifetime of the CdTe/CdS core−shell as compared to CdTe QD materials, where in both cases only CdTe gets excited. We have carried out femtosecond transient absorption studies of these QD and core−shell materials by exciting them with 400 nm laser light and monitoring the transients in the visible to near-IR region to study charge carrier and charge transfer dynamics in the ultrafast time scale. On laser excitation, electron−hole pairs are generated which are confirmed by induced absorption signal for the charge carriers in the visible and near-IR region and an immediate bleach at excitonic position for both QD and QD core−shell. The carrier relaxation was found to be slower and the carrier lifetime was found to be longer in the QD core−shell as compared to the QD indicating charge transfer from core to shell. Carrier quenching studies have been carried out for both CdTe and CdTe/CdS by using benzoquinone (BQ, electron quencher) and Pyridine (Py, hole quencher) to assign the different relaxation processes. Details about the relaxation of hot carriers and the quenching effect on the relaxation dynamic of the charge carriers have been discussed for both QD and core−shell nanostructures.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp909118c</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Nanops and Nanostructures</subject><ispartof>Journal of physical chemistry. C, 2010-01, Vol.114 (3), p.1460-1466</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-248c882fac10c72c934f3ddae8c6c2251552b0ddc764687c0ba1291ab7a2a88a3</citedby><cites>FETCH-LOGICAL-a325t-248c882fac10c72c934f3ddae8c6c2251552b0ddc764687c0ba1291ab7a2a88a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp909118c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp909118c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Rawalekar, Sachin</creatorcontrib><creatorcontrib>Kaniyankandy, Sreejith</creatorcontrib><creatorcontrib>Verma, Sandeep</creatorcontrib><creatorcontrib>Ghosh, Hirendra N</creatorcontrib><title>Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We are reporting ultrafast charge carrier and charge transfer dynamics of the CdTe quantum dot (QD) and type II CdTe/CdS core−shell QD materials with different shell (CdS) thicknesses. Herein, we have synthesized CdTe and CdTe/CdS core−shell quantum dots by using 3-mercaptopropionic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdTe QD and CdTe/CdS core−shell QD materials. Time-resolved emission studies indicate a longer emission lifetime of the CdTe/CdS core−shell as compared to CdTe QD materials, where in both cases only CdTe gets excited. We have carried out femtosecond transient absorption studies of these QD and core−shell materials by exciting them with 400 nm laser light and monitoring the transients in the visible to near-IR region to study charge carrier and charge transfer dynamics in the ultrafast time scale. On laser excitation, electron−hole pairs are generated which are confirmed by induced absorption signal for the charge carriers in the visible and near-IR region and an immediate bleach at excitonic position for both QD and QD core−shell. The carrier relaxation was found to be slower and the carrier lifetime was found to be longer in the QD core−shell as compared to the QD indicating charge transfer from core to shell. Carrier quenching studies have been carried out for both CdTe and CdTe/CdS by using benzoquinone (BQ, electron quencher) and Pyridine (Py, hole quencher) to assign the different relaxation processes. Details about the relaxation of hot carriers and the quenching effect on the relaxation dynamic of the charge carriers have been discussed for both QD and core−shell nanostructures.</description><subject>C: Nanops and Nanostructures</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkEFOwzAURC0EEqWw4AbesGARajtJ4yyrlAJSJQRp19GP7dBUSRzZjkRu0DVH4GichNBCV6z-SDN68zUIXVNyRwmjk20bk5hSLk7QiMY-86IgDE-POojO0YW1W0JCn1B_hD7XlTNQgHU42YB5UzgBY0pl8Kuq4B1cqRsMjfxzVwYaWwz2vG-gLoXFusCJXKlJIlOcaKO-dh_pRlUVfumgcV2N59pZDBanrpOlkjjv8ULVTlsl9ADeE0vVODzLrTbtvjFtlXBGW6Hb_hKdFVBZdfV7x2i9uF8lj97y-eEpmS098FnoPBZwwTkrQFAiIiZiPyh8KUFxMRWMhTQMWU6kFNE0mPJIkBwoiynkETDgHPwxuj1wxVBsjSqy1pQ1mD6jJPsZNzuOO2RvDlkQNtvqzjTDZ__kvgHrtnyv</recordid><startdate>20100128</startdate><enddate>20100128</enddate><creator>Rawalekar, Sachin</creator><creator>Kaniyankandy, Sreejith</creator><creator>Verma, Sandeep</creator><creator>Ghosh, Hirendra N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100128</creationdate><title>Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy</title><author>Rawalekar, Sachin ; Kaniyankandy, Sreejith ; Verma, Sandeep ; Ghosh, Hirendra N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-248c882fac10c72c934f3ddae8c6c2251552b0ddc764687c0ba1291ab7a2a88a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Nanops and Nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rawalekar, Sachin</creatorcontrib><creatorcontrib>Kaniyankandy, Sreejith</creatorcontrib><creatorcontrib>Verma, Sandeep</creatorcontrib><creatorcontrib>Ghosh, Hirendra N</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rawalekar, Sachin</au><au>Kaniyankandy, Sreejith</au><au>Verma, Sandeep</au><au>Ghosh, Hirendra N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-01-28</date><risdate>2010</risdate><volume>114</volume><issue>3</issue><spage>1460</spage><epage>1466</epage><pages>1460-1466</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We are reporting ultrafast charge carrier and charge transfer dynamics of the CdTe quantum dot (QD) and type II CdTe/CdS core−shell QD materials with different shell (CdS) thicknesses. Herein, we have synthesized CdTe and CdTe/CdS core−shell quantum dots by using 3-mercaptopropionic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdTe QD and CdTe/CdS core−shell QD materials. Time-resolved emission studies indicate a longer emission lifetime of the CdTe/CdS core−shell as compared to CdTe QD materials, where in both cases only CdTe gets excited. We have carried out femtosecond transient absorption studies of these QD and core−shell materials by exciting them with 400 nm laser light and monitoring the transients in the visible to near-IR region to study charge carrier and charge transfer dynamics in the ultrafast time scale. On laser excitation, electron−hole pairs are generated which are confirmed by induced absorption signal for the charge carriers in the visible and near-IR region and an immediate bleach at excitonic position for both QD and QD core−shell. The carrier relaxation was found to be slower and the carrier lifetime was found to be longer in the QD core−shell as compared to the QD indicating charge transfer from core to shell. Carrier quenching studies have been carried out for both CdTe and CdTe/CdS by using benzoquinone (BQ, electron quencher) and Pyridine (Py, hole quencher) to assign the different relaxation processes. Details about the relaxation of hot carriers and the quenching effect on the relaxation dynamic of the charge carriers have been discussed for both QD and core−shell nanostructures.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp909118c</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2010-01, Vol.114 (3), p.1460-1466 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp909118c |
source | ACS Publications |
subjects | C: Nanops and Nanostructures |
title | Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Charge%20Carrier%20Relaxation%20and%20Charge%20Transfer%20Dynamics%20of%20CdTe/CdS%20Core%E2%88%92Shell%20Quantum%20Dots%20as%20Studied%20by%20Femtosecond%20Transient%20Absorption%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Rawalekar,%20Sachin&rft.date=2010-01-28&rft.volume=114&rft.issue=3&rft.spage=1460&rft.epage=1466&rft.pages=1460-1466&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp909118c&rft_dat=%3Cacs_cross%3Ea58757981%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |