Computational Discovery of New Zeolite-Like Materials

We present a database of computationally predicted zeolite-like materials. The materials were identified by a Monte Carlo search of Si atom positions as the number of unique atoms, density, space group, and unit cell of the crystalline material was systematically explored. Over 2.7M unique structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2009-12, Vol.113 (51), p.21353-21360
Hauptverfasser: Deem, Michael W, Pophale, Ramdas, Cheeseman, Phillip A, Earl, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21360
container_issue 51
container_start_page 21353
container_title Journal of physical chemistry. C
container_volume 113
creator Deem, Michael W
Pophale, Ramdas
Cheeseman, Phillip A
Earl, David J
description We present a database of computationally predicted zeolite-like materials. The materials were identified by a Monte Carlo search of Si atom positions as the number of unique atoms, density, space group, and unit cell of the crystalline material was systematically explored. Over 2.7M unique structures were identified, with roughly 10% within the +30 kJ/mol Si energetic band above α-quartz in which the known zeolites lie. Predicted structures within this band have geometric and topological characteristics similar to that of the known zeolites. Known zeolites are shown to lie on the low-density edge of the distribution of predicted structures. Dielectric constants and X-ray powder diffraction patterns are calculated. Strategies for chemical synthesis of these materials are discussed, a low-density subset of the materials is identified as particularly interesting, and the complementarity of these materials to high-throughput methods is discussed. These structures have been deposited in two publicly available databases.
doi_str_mv 10.1021/jp906984z
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp906984z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b188032809</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-3dd1ce9105da12fd1796463e563fb815afc03ae74ca79c698645ec4beccf9d423</originalsourceid><addsrcrecordid>eNptjz1PwzAURS0EEqUw8A-yMDAE_GI7qUcUPqUACyws0avzLDmkOLJdUPn1BBV1Yrp3OLq6h7FT4BfAC7jsR81LvZDfe2wGWhR5JZXa33VZHbKjGHvOleAgZkzVfjWuEybnP3DIrl00_pPCJvM2e6Kv7I384BLljXun7BETBYdDPGYHdgo6-cs5e729eanv8-b57qG-anIUhUq56DowpIGrDqGwHVS6lKUgVQq7XIBCa7hAqqTBSpvpdikVGbkkY6zuZCHm7Hy7a4KPMZBtx-BWGDYt8PbXt935TuzZlkUT296vw-QT_-F-AHC1VIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Discovery of New Zeolite-Like Materials</title><source>ACS Publications</source><creator>Deem, Michael W ; Pophale, Ramdas ; Cheeseman, Phillip A ; Earl, David J</creator><creatorcontrib>Deem, Michael W ; Pophale, Ramdas ; Cheeseman, Phillip A ; Earl, David J</creatorcontrib><description>We present a database of computationally predicted zeolite-like materials. The materials were identified by a Monte Carlo search of Si atom positions as the number of unique atoms, density, space group, and unit cell of the crystalline material was systematically explored. Over 2.7M unique structures were identified, with roughly 10% within the +30 kJ/mol Si energetic band above α-quartz in which the known zeolites lie. Predicted structures within this band have geometric and topological characteristics similar to that of the known zeolites. Known zeolites are shown to lie on the low-density edge of the distribution of predicted structures. Dielectric constants and X-ray powder diffraction patterns are calculated. Strategies for chemical synthesis of these materials are discussed, a low-density subset of the materials is identified as particularly interesting, and the complementarity of these materials to high-throughput methods is discussed. These structures have been deposited in two publicly available databases.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp906984z</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis</subject><ispartof>Journal of physical chemistry. C, 2009-12, Vol.113 (51), p.21353-21360</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-3dd1ce9105da12fd1796463e563fb815afc03ae74ca79c698645ec4beccf9d423</citedby><cites>FETCH-LOGICAL-a325t-3dd1ce9105da12fd1796463e563fb815afc03ae74ca79c698645ec4beccf9d423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp906984z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp906984z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Deem, Michael W</creatorcontrib><creatorcontrib>Pophale, Ramdas</creatorcontrib><creatorcontrib>Cheeseman, Phillip A</creatorcontrib><creatorcontrib>Earl, David J</creatorcontrib><title>Computational Discovery of New Zeolite-Like Materials</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We present a database of computationally predicted zeolite-like materials. The materials were identified by a Monte Carlo search of Si atom positions as the number of unique atoms, density, space group, and unit cell of the crystalline material was systematically explored. Over 2.7M unique structures were identified, with roughly 10% within the +30 kJ/mol Si energetic band above α-quartz in which the known zeolites lie. Predicted structures within this band have geometric and topological characteristics similar to that of the known zeolites. Known zeolites are shown to lie on the low-density edge of the distribution of predicted structures. Dielectric constants and X-ray powder diffraction patterns are calculated. Strategies for chemical synthesis of these materials are discussed, a low-density subset of the materials is identified as particularly interesting, and the complementarity of these materials to high-throughput methods is discussed. These structures have been deposited in two publicly available databases.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptjz1PwzAURS0EEqUw8A-yMDAE_GI7qUcUPqUACyws0avzLDmkOLJdUPn1BBV1Yrp3OLq6h7FT4BfAC7jsR81LvZDfe2wGWhR5JZXa33VZHbKjGHvOleAgZkzVfjWuEybnP3DIrl00_pPCJvM2e6Kv7I384BLljXun7BETBYdDPGYHdgo6-cs5e729eanv8-b57qG-anIUhUq56DowpIGrDqGwHVS6lKUgVQq7XIBCa7hAqqTBSpvpdikVGbkkY6zuZCHm7Hy7a4KPMZBtx-BWGDYt8PbXt935TuzZlkUT296vw-QT_-F-AHC1VIo</recordid><startdate>20091224</startdate><enddate>20091224</enddate><creator>Deem, Michael W</creator><creator>Pophale, Ramdas</creator><creator>Cheeseman, Phillip A</creator><creator>Earl, David J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20091224</creationdate><title>Computational Discovery of New Zeolite-Like Materials</title><author>Deem, Michael W ; Pophale, Ramdas ; Cheeseman, Phillip A ; Earl, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-3dd1ce9105da12fd1796463e563fb815afc03ae74ca79c698645ec4beccf9d423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deem, Michael W</creatorcontrib><creatorcontrib>Pophale, Ramdas</creatorcontrib><creatorcontrib>Cheeseman, Phillip A</creatorcontrib><creatorcontrib>Earl, David J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deem, Michael W</au><au>Pophale, Ramdas</au><au>Cheeseman, Phillip A</au><au>Earl, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Discovery of New Zeolite-Like Materials</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2009-12-24</date><risdate>2009</risdate><volume>113</volume><issue>51</issue><spage>21353</spage><epage>21360</epage><pages>21353-21360</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We present a database of computationally predicted zeolite-like materials. The materials were identified by a Monte Carlo search of Si atom positions as the number of unique atoms, density, space group, and unit cell of the crystalline material was systematically explored. Over 2.7M unique structures were identified, with roughly 10% within the +30 kJ/mol Si energetic band above α-quartz in which the known zeolites lie. Predicted structures within this band have geometric and topological characteristics similar to that of the known zeolites. Known zeolites are shown to lie on the low-density edge of the distribution of predicted structures. Dielectric constants and X-ray powder diffraction patterns are calculated. Strategies for chemical synthesis of these materials are discussed, a low-density subset of the materials is identified as particularly interesting, and the complementarity of these materials to high-throughput methods is discussed. These structures have been deposited in two publicly available databases.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp906984z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2009-12, Vol.113 (51), p.21353-21360
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp906984z
source ACS Publications
subjects C: Surfaces, Interfaces, Catalysis
title Computational Discovery of New Zeolite-Like Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Discovery%20of%20New%20Zeolite-Like%20Materials&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Deem,%20Michael%20W&rft.date=2009-12-24&rft.volume=113&rft.issue=51&rft.spage=21353&rft.epage=21360&rft.pages=21353-21360&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp906984z&rft_dat=%3Cacs_cross%3Eb188032809%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true