Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations

Molecular dynamics simulations are used to characterize the hydrates of Xe, methane, and CO2, allowing for a systematic comparison of the structural and dynamical properties for these three hydrates. Although the host−guest interaction energy for the T = 0 K structures is most attractive in the case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOURNAL OF PHYSICAL CHEMISTRY C 2010-04, Vol.114 (12), p.5555-5564
Hauptverfasser: Jiang, H, Jordan, K. D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5564
container_issue 12
container_start_page 5555
container_title JOURNAL OF PHYSICAL CHEMISTRY C
container_volume 114
creator Jiang, H
Jordan, K. D
description Molecular dynamics simulations are used to characterize the hydrates of Xe, methane, and CO2, allowing for a systematic comparison of the structural and dynamical properties for these three hydrates. Although the host−guest interaction energy for the T = 0 K structures is most attractive in the case of Xe, other structural and dynamical properties from the simulations indicate that, in fact, host−guest coupling is most important for the CO2 hydrate. Specifically, the host lattice of CO2 hydrate expands more with increasing temperature than do the lattices of the xenon and methane hydrates, and the translational and rotational dynamics of the water molecules are predicted to be most perturbed in the CO2 hydrate. The simulations predict that the CO2 and xenon hydrates have lower speed of sound values and lower themal conductivities than methane hydrate or the empty lattice.
doi_str_mv 10.1021/jp9063406
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp9063406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b516853592</sourcerecordid><originalsourceid>FETCH-LOGICAL-a387t-f50f9fca5a08bf92ddba97730bd31313fbb39fcc4c115b6db4fddc1290dd9fe3</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AgCs7pwf8gCB6EVZOmXdejdNMJmwru4K3kJ8tok5qk4P4J_2YzJ8ODvMN7fPPhER4AlxjdYpTiu01XojHJ0PgIDHBJ0qTI8vz4MGfFKTjzfoNQThAmA_BV2bajTntroFUwrCV8dbaTLmjpd8m7NNaM4FKGNTVyBKkRsKKORT_V9lMLCedb4WiIXDnbwtlHrxvNnO7bH_xsjfwTLW0jed9QB6dbQ1vNPXzTbQyCtsafgxNFGy8vfvsQrB5mq2qeLF4en6r7RULJpAiJypEqFac5RROmylQIRsuiIIgJgmMpxkh85xnHOGdjwTIlBMdpiYQolSRDcLVfa33Qtec6SL7m1hjJQ43RDpKIbvaIO-u9k6runG6p20ZR745dH44d7fXeUu7rje2dib__x30DtdSBEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations</title><source>American Chemical Society Journals</source><creator>Jiang, H ; Jordan, K. D</creator><creatorcontrib>Jiang, H ; Jordan, K. D ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States) ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><description>Molecular dynamics simulations are used to characterize the hydrates of Xe, methane, and CO2, allowing for a systematic comparison of the structural and dynamical properties for these three hydrates. Although the host−guest interaction energy for the T = 0 K structures is most attractive in the case of Xe, other structural and dynamical properties from the simulations indicate that, in fact, host−guest coupling is most important for the CO2 hydrate. Specifically, the host lattice of CO2 hydrate expands more with increasing temperature than do the lattices of the xenon and methane hydrates, and the translational and rotational dynamics of the water molecules are predicted to be most perturbed in the CO2 hydrate. The simulations predict that the CO2 and xenon hydrates have lower speed of sound values and lower themal conductivities than methane hydrate or the empty lattice.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp9063406</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>JOURNAL OF PHYSICAL CHEMISTRY C, 2010-04, Vol.114 (12), p.5555-5564</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a387t-f50f9fca5a08bf92ddba97730bd31313fbb39fcc4c115b6db4fddc1290dd9fe3</citedby><cites>FETCH-LOGICAL-a387t-f50f9fca5a08bf92ddba97730bd31313fbb39fcc4c115b6db4fddc1290dd9fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp9063406$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp9063406$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1012903$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, H</creatorcontrib><creatorcontrib>Jordan, K. D</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States)</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><title>Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations</title><title>JOURNAL OF PHYSICAL CHEMISTRY C</title><addtitle>J. Phys. Chem. C</addtitle><description>Molecular dynamics simulations are used to characterize the hydrates of Xe, methane, and CO2, allowing for a systematic comparison of the structural and dynamical properties for these three hydrates. Although the host−guest interaction energy for the T = 0 K structures is most attractive in the case of Xe, other structural and dynamical properties from the simulations indicate that, in fact, host−guest coupling is most important for the CO2 hydrate. Specifically, the host lattice of CO2 hydrate expands more with increasing temperature than do the lattices of the xenon and methane hydrates, and the translational and rotational dynamics of the water molecules are predicted to be most perturbed in the CO2 hydrate. The simulations predict that the CO2 and xenon hydrates have lower speed of sound values and lower themal conductivities than methane hydrate or the empty lattice.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpt0M9LwzAUB_AgCs7pwf8gCB6EVZOmXdejdNMJmwru4K3kJ8tok5qk4P4J_2YzJ8ODvMN7fPPhER4AlxjdYpTiu01XojHJ0PgIDHBJ0qTI8vz4MGfFKTjzfoNQThAmA_BV2bajTntroFUwrCV8dbaTLmjpd8m7NNaM4FKGNTVyBKkRsKKORT_V9lMLCedb4WiIXDnbwtlHrxvNnO7bH_xsjfwTLW0jed9QB6dbQ1vNPXzTbQyCtsafgxNFGy8vfvsQrB5mq2qeLF4en6r7RULJpAiJypEqFac5RROmylQIRsuiIIgJgmMpxkh85xnHOGdjwTIlBMdpiYQolSRDcLVfa33Qtec6SL7m1hjJQ43RDpKIbvaIO-u9k6runG6p20ZR745dH44d7fXeUu7rje2dib__x30DtdSBEg</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Jiang, H</creator><creator>Jordan, K. D</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20100401</creationdate><title>Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations</title><author>Jiang, H ; Jordan, K. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a387t-f50f9fca5a08bf92ddba97730bd31313fbb39fcc4c115b6db4fddc1290dd9fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, H</creatorcontrib><creatorcontrib>Jordan, K. D</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States)</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>JOURNAL OF PHYSICAL CHEMISTRY C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, H</au><au>Jordan, K. D</au><aucorp>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States)</aucorp><aucorp>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations</atitle><jtitle>JOURNAL OF PHYSICAL CHEMISTRY C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>114</volume><issue>12</issue><spage>5555</spage><epage>5564</epage><pages>5555-5564</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Molecular dynamics simulations are used to characterize the hydrates of Xe, methane, and CO2, allowing for a systematic comparison of the structural and dynamical properties for these three hydrates. Although the host−guest interaction energy for the T = 0 K structures is most attractive in the case of Xe, other structural and dynamical properties from the simulations indicate that, in fact, host−guest coupling is most important for the CO2 hydrate. Specifically, the host lattice of CO2 hydrate expands more with increasing temperature than do the lattices of the xenon and methane hydrates, and the translational and rotational dynamics of the water molecules are predicted to be most perturbed in the CO2 hydrate. The simulations predict that the CO2 and xenon hydrates have lower speed of sound values and lower themal conductivities than methane hydrate or the empty lattice.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp9063406</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof JOURNAL OF PHYSICAL CHEMISTRY C, 2010-04, Vol.114 (12), p.5555-5564
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp9063406
source American Chemical Society Journals
title Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20Properties%20of%20Xenon,%20Methane,%20and%20Carbon%20Dioxide%20Hydrates%20from%20Equilibrium%20and%20Nonequilibrium%20Molecular%20Dynamics%20Simulations&rft.jtitle=JOURNAL%20OF%20PHYSICAL%20CHEMISTRY%20C&rft.au=Jiang,%20H&rft.aucorp=National%20Energy%20Technology%20Lab.%20(NETL),%20Pittsburgh,%20PA,%20and%20Morgantown,%20WV%20(United%20States)&rft.date=2010-04-01&rft.volume=114&rft.issue=12&rft.spage=5555&rft.epage=5564&rft.pages=5555-5564&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp9063406&rft_dat=%3Cacs_osti_%3Eb516853592%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true