Immobilization of Zerovalent Iron Nanoparticles into Electrospun Polymer Nanofibers: Synthesis, Characterization, and Potential Environmental Applications

We present a facile approach to immobilizing zerovalent iron nanoparticles (ZVI NPs) into electrospun polymer nanofibrous mats. Electrospun poly(acrylic acid) (PAA)/poly(vinyl alcohol) (PVA) nanofibrous mats were treated at an elevated temperature to render them water stable. The water-insoluble nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2009-10, Vol.113 (42), p.18062-18068
Hauptverfasser: Xiao, Shili, Shen, Mingwu, Guo, Rui, Wang, Shanyuan, Shi, Xiangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a facile approach to immobilizing zerovalent iron nanoparticles (ZVI NPs) into electrospun polymer nanofibrous mats. Electrospun poly(acrylic acid) (PAA)/poly(vinyl alcohol) (PVA) nanofibrous mats were treated at an elevated temperature to render them water stable. The water-insoluble nanofibrous mats were then used as nanoreactors to complex ferric iron for subsequent formation and immobilization of ZVI NPs. Scanning electron microscopy (SEM) studies show that the smooth, uniform morphology of the electrospun nanofibrous mats does not significantly change after immobilization with ZVI NPs. Energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and thermogravimetric analysis (TGA) were used to characterize the polymer nanofibers before and after the immobilization of ZVI NPs. We show that the formed ZVI NPs are uniformly distributed into the electrospun nanofibers with a mean particle size of 1.6 nm. The produced ZVI NP-containing polymer nanofibrous mats exhibit a superior capability to decolorize acid fuchsine solution, a model dye in wastewater of printing and dyeing industry. Findings from this study suggest a significant potential of using the electrospun nanofibers as nanoreactors to synthesize reactive iron NPs for a broad range of environmental remediation applications providing a foundation for further rational design of various composite nanofibrous materials for various applications.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp905542g