Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion

Donor−acceptor molecules have been fabricated on a nanostructured semiconducting electrode for solar energy conversion (i.e., dye-sensitized bulk heterojunction solar cell). The device structure is similar to that of dye-sensitized solar cells, but the top surface of the nanostructured semiconductin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2009-05, Vol.113 (21), p.9029-9039
Hauptverfasser: Imahori, Hiroshi, Umeyama, Tomokazu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9039
container_issue 21
container_start_page 9029
container_title Journal of physical chemistry. C
container_volume 113
creator Imahori, Hiroshi
Umeyama, Tomokazu
description Donor−acceptor molecules have been fabricated on a nanostructured semiconducting electrode for solar energy conversion (i.e., dye-sensitized bulk heterojunction solar cell). The device structure is similar to that of dye-sensitized solar cells, but the top surface of the nanostructured semiconducting electrode is covered with donor−acceptor multilayers. Thus, initial charge separation takes place at the blend interface of the donor−acceptor, which is a typical characteristic of bulk heterojunction solar cells, whereas subsequent processes resemble those in dye-sensitized solar cells. In this novel solar cell, donor-nanocarbons (i.e., fullerenes and carbon nanotubes) have been successfully deposited electrophoretically or spin-coated onto nanostructured SnO2 and TiO2 electrodes that exhibit efficient photocurrent generation. The bottom-up self-organization of porphyrin and fullerene molecules onto the nanostructured electrodes has led to moderate cell performance with an incident photon-to-current efficiency of up to ∼60% and a power conversion efficiency of 1−2%. Importance of donor−acceptor nanoarchitecture on the nanostructured semiconducting electrodes is highlighted in terms of self-assembly of donor−acceptor molecules.
doi_str_mv 10.1021/jp9007448
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp9007448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a203309838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-b2c189c6c721a39ad6c8db45ecf41fdae1115e75bf42a048f072acbb3c36123b3</originalsourceid><addsrcrecordid>eNptkL1OAzEQhC0EEiFQ8AZuKCgOvLbvr4xCAkgRFIGG5uTbs8NFiR2tL0h5A2oekSfhUFAqqhlpvlmthrFLEDcgJNwuN6UQudbFERtAqWSS6zQ9Pnidn7KzGJdCpEqAGrC3u-ADfX9-jRDtpgvEn4wPhvC97Sx2W7I8eD636xaDb7bYtX7BJ6s-otDYyF3fmIeVIT7xlhY7Pg7-w1Jsgz9nJ86sor340yF7nU5exg_J7Pn-cTyaJUaLrEtqiVCUmGEuwajSNBkWTa1Ti06Da4wFgNTmae20NEIXTuTSYF0rVBlIVashu97fRQoxknXVhtq1oV0FovodpTqM0rNXe9ZgrJZhS77_7B_uB1kHYx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion</title><source>ACS Publications</source><creator>Imahori, Hiroshi ; Umeyama, Tomokazu</creator><creatorcontrib>Imahori, Hiroshi ; Umeyama, Tomokazu</creatorcontrib><description>Donor−acceptor molecules have been fabricated on a nanostructured semiconducting electrode for solar energy conversion (i.e., dye-sensitized bulk heterojunction solar cell). The device structure is similar to that of dye-sensitized solar cells, but the top surface of the nanostructured semiconducting electrode is covered with donor−acceptor multilayers. Thus, initial charge separation takes place at the blend interface of the donor−acceptor, which is a typical characteristic of bulk heterojunction solar cells, whereas subsequent processes resemble those in dye-sensitized solar cells. In this novel solar cell, donor-nanocarbons (i.e., fullerenes and carbon nanotubes) have been successfully deposited electrophoretically or spin-coated onto nanostructured SnO2 and TiO2 electrodes that exhibit efficient photocurrent generation. The bottom-up self-organization of porphyrin and fullerene molecules onto the nanostructured electrodes has led to moderate cell performance with an incident photon-to-current efficiency of up to ∼60% and a power conversion efficiency of 1−2%. Importance of donor−acceptor nanoarchitecture on the nanostructured semiconducting electrodes is highlighted in terms of self-assembly of donor−acceptor molecules.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp9007448</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2009-05, Vol.113 (21), p.9029-9039</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-b2c189c6c721a39ad6c8db45ecf41fdae1115e75bf42a048f072acbb3c36123b3</citedby><cites>FETCH-LOGICAL-a406t-b2c189c6c721a39ad6c8db45ecf41fdae1115e75bf42a048f072acbb3c36123b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp9007448$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp9007448$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Imahori, Hiroshi</creatorcontrib><creatorcontrib>Umeyama, Tomokazu</creatorcontrib><title>Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Donor−acceptor molecules have been fabricated on a nanostructured semiconducting electrode for solar energy conversion (i.e., dye-sensitized bulk heterojunction solar cell). The device structure is similar to that of dye-sensitized solar cells, but the top surface of the nanostructured semiconducting electrode is covered with donor−acceptor multilayers. Thus, initial charge separation takes place at the blend interface of the donor−acceptor, which is a typical characteristic of bulk heterojunction solar cells, whereas subsequent processes resemble those in dye-sensitized solar cells. In this novel solar cell, donor-nanocarbons (i.e., fullerenes and carbon nanotubes) have been successfully deposited electrophoretically or spin-coated onto nanostructured SnO2 and TiO2 electrodes that exhibit efficient photocurrent generation. The bottom-up self-organization of porphyrin and fullerene molecules onto the nanostructured electrodes has led to moderate cell performance with an incident photon-to-current efficiency of up to ∼60% and a power conversion efficiency of 1−2%. Importance of donor−acceptor nanoarchitecture on the nanostructured semiconducting electrodes is highlighted in terms of self-assembly of donor−acceptor molecules.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkL1OAzEQhC0EEiFQ8AZuKCgOvLbvr4xCAkgRFIGG5uTbs8NFiR2tL0h5A2oekSfhUFAqqhlpvlmthrFLEDcgJNwuN6UQudbFERtAqWSS6zQ9Pnidn7KzGJdCpEqAGrC3u-ADfX9-jRDtpgvEn4wPhvC97Sx2W7I8eD636xaDb7bYtX7BJ6s-otDYyF3fmIeVIT7xlhY7Pg7-w1Jsgz9nJ86sor340yF7nU5exg_J7Pn-cTyaJUaLrEtqiVCUmGEuwajSNBkWTa1Ti06Da4wFgNTmae20NEIXTuTSYF0rVBlIVashu97fRQoxknXVhtq1oV0FovodpTqM0rNXe9ZgrJZhS77_7B_uB1kHYx4</recordid><startdate>20090528</startdate><enddate>20090528</enddate><creator>Imahori, Hiroshi</creator><creator>Umeyama, Tomokazu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090528</creationdate><title>Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion</title><author>Imahori, Hiroshi ; Umeyama, Tomokazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-b2c189c6c721a39ad6c8db45ecf41fdae1115e75bf42a048f072acbb3c36123b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imahori, Hiroshi</creatorcontrib><creatorcontrib>Umeyama, Tomokazu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imahori, Hiroshi</au><au>Umeyama, Tomokazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2009-05-28</date><risdate>2009</risdate><volume>113</volume><issue>21</issue><spage>9029</spage><epage>9039</epage><pages>9029-9039</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Donor−acceptor molecules have been fabricated on a nanostructured semiconducting electrode for solar energy conversion (i.e., dye-sensitized bulk heterojunction solar cell). The device structure is similar to that of dye-sensitized solar cells, but the top surface of the nanostructured semiconducting electrode is covered with donor−acceptor multilayers. Thus, initial charge separation takes place at the blend interface of the donor−acceptor, which is a typical characteristic of bulk heterojunction solar cells, whereas subsequent processes resemble those in dye-sensitized solar cells. In this novel solar cell, donor-nanocarbons (i.e., fullerenes and carbon nanotubes) have been successfully deposited electrophoretically or spin-coated onto nanostructured SnO2 and TiO2 electrodes that exhibit efficient photocurrent generation. The bottom-up self-organization of porphyrin and fullerene molecules onto the nanostructured electrodes has led to moderate cell performance with an incident photon-to-current efficiency of up to ∼60% and a power conversion efficiency of 1−2%. Importance of donor−acceptor nanoarchitecture on the nanostructured semiconducting electrodes is highlighted in terms of self-assembly of donor−acceptor molecules.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp9007448</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2009-05, Vol.113 (21), p.9029-9039
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp9007448
source ACS Publications
title Donor−Acceptor Nanoarchitecture on Semiconducting Electrodes for Solar Energy Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Donor%E2%88%92Acceptor%20Nanoarchitecture%20on%20Semiconducting%20Electrodes%20for%20Solar%20Energy%20Conversion&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Imahori,%20Hiroshi&rft.date=2009-05-28&rft.volume=113&rft.issue=21&rft.spage=9029&rft.epage=9039&rft.pages=9029-9039&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp9007448&rft_dat=%3Cacs_cross%3Ea203309838%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true