Multitip-Localized Enhanced Raman Scattering from a Nanostructured Optical Fiber Array
An optical fiber bundle composed of ∼6000 individual 3 μm core diameter fibers has been chemically etched to form a regular array of sharp tips, resulting in the confinement of the light reaching the tip apexes of the fibers as demonstrated by near-field optical microscopy. After coating this nanost...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2009-01, Vol.113 (3), p.874-881 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An optical fiber bundle composed of ∼6000 individual 3 μm core diameter fibers has been chemically etched to form a regular array of sharp tips, resulting in the confinement of the light reaching the tip apexes of the fibers as demonstrated by near-field optical microscopy. After coating this nanostructure with a gold thin film (30 nm thick), spatially resolved Raman experiments have been performed to detect a benzenethiol monolayer adsorbed on the covering gold film. High intensity Raman spectra were observed and localized at the extremities of the tips, demonstrating a surface enhanced Raman scattering (SERS) effect induced by the strong curvature of the metallized tip apexes. The Raman enhancement factor of the nanostructure has been investigated and an average enhancement factor of 2.7 × 104 was measured. This opens new avenues for the use of such optical fibers for in situ and endoscopic Raman measurements on complex systems. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp808839f |