Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions

The reaction pathways and kinetics of steam methane reforming (SMR) over Ni(111) are investigated using plane wave density functional theory. The thermochemical data are used to develop a microkinetic model of SMR that allows for the investigation of reforming pathways and the most abundant reaction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2009-03, Vol.113 (12), p.4898-4908
Hauptverfasser: Blaylock, D. Wayne, Ogura, Teppei, Green, William H, Beran, Gregory J. O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4908
container_issue 12
container_start_page 4898
container_title Journal of physical chemistry. C
container_volume 113
creator Blaylock, D. Wayne
Ogura, Teppei
Green, William H
Beran, Gregory J. O
description The reaction pathways and kinetics of steam methane reforming (SMR) over Ni(111) are investigated using plane wave density functional theory. The thermochemical data are used to develop a microkinetic model of SMR that allows for the investigation of reforming pathways and the most abundant reaction intermediates on the catalyst surface at industrially relevant temperatures and pressures. Pairing the kinetic model with a statistical thermodynamic treatment, surface behavior under a wide range of temperatures, pressures, and initial concentrations can be examined. We present our results at T = 800 °C and P = 10 bar with an initial H2O/CH4 ratio of 2.5:1. Sensitivity analysis is used to provide information about rate-limiting steps in the reaction network. The reaction intermediate CH* is found to be the most important carbon-containing intermediate. CH4(g) adsorption as well as the reactions CH* + O* → CHO* and CH* + OH* → CHOH* are found to be the most sensitive reactions in the mechanism. Consistent accounting for entropic effects was found to be important in obtaining reasonable surface coverages of reaction intermediates, which can influence the determination of active reforming pathways on the catalyst surface.
doi_str_mv 10.1021/jp806527q
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp806527q</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c597181755</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-719550af217416ccb0509f95d0dc747a64f95fe27c27fd2e955062f9614856593</originalsourceid><addsrcrecordid>eNptkE9LAzEUxIMoWKsHv0Eugj2sJtlN0j3K4p9iVdB6XmL2pU3pJjVJhYIf3l0rPXl6M8zvzWEQOqfkihJGr5frMRGcyc8DNKBlzjJZcH6414U8RicxLgnhOaH5AH1Xvl1vkkrWO7XCE_cFMdn5r8fe4NkCQuv1AlobU9hi5Rr8aB0kq2OfvyVQLX6CtFAO8CsYH1rr5rj7fraXlNIR3rgGQhepVVdhNa68a2zfH0_RkVGrCGd_d4je725n1UM2fbmfVDfTTOWCpUzSknOiDKOyoELrD8JJaUrekEbLQipRdMYAk5pJ0zDoacFMKWgx5oKX-RCNdr06-BgDmHodbKvCtqak7mer97N17MWOVTrWS78J3SzxH-4HIhNstA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions</title><source>ACS Publications</source><creator>Blaylock, D. Wayne ; Ogura, Teppei ; Green, William H ; Beran, Gregory J. O</creator><creatorcontrib>Blaylock, D. Wayne ; Ogura, Teppei ; Green, William H ; Beran, Gregory J. O</creatorcontrib><description>The reaction pathways and kinetics of steam methane reforming (SMR) over Ni(111) are investigated using plane wave density functional theory. The thermochemical data are used to develop a microkinetic model of SMR that allows for the investigation of reforming pathways and the most abundant reaction intermediates on the catalyst surface at industrially relevant temperatures and pressures. Pairing the kinetic model with a statistical thermodynamic treatment, surface behavior under a wide range of temperatures, pressures, and initial concentrations can be examined. We present our results at T = 800 °C and P = 10 bar with an initial H2O/CH4 ratio of 2.5:1. Sensitivity analysis is used to provide information about rate-limiting steps in the reaction network. The reaction intermediate CH* is found to be the most important carbon-containing intermediate. CH4(g) adsorption as well as the reactions CH* + O* → CHO* and CH* + OH* → CHOH* are found to be the most sensitive reactions in the mechanism. Consistent accounting for entropic effects was found to be important in obtaining reasonable surface coverages of reaction intermediates, which can influence the determination of active reforming pathways on the catalyst surface.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp806527q</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Catalysis</subject><ispartof>Journal of physical chemistry. C, 2009-03, Vol.113 (12), p.4898-4908</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-719550af217416ccb0509f95d0dc747a64f95fe27c27fd2e955062f9614856593</citedby><cites>FETCH-LOGICAL-a362t-719550af217416ccb0509f95d0dc747a64f95fe27c27fd2e955062f9614856593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp806527q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp806527q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Blaylock, D. Wayne</creatorcontrib><creatorcontrib>Ogura, Teppei</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Beran, Gregory J. O</creatorcontrib><title>Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The reaction pathways and kinetics of steam methane reforming (SMR) over Ni(111) are investigated using plane wave density functional theory. The thermochemical data are used to develop a microkinetic model of SMR that allows for the investigation of reforming pathways and the most abundant reaction intermediates on the catalyst surface at industrially relevant temperatures and pressures. Pairing the kinetic model with a statistical thermodynamic treatment, surface behavior under a wide range of temperatures, pressures, and initial concentrations can be examined. We present our results at T = 800 °C and P = 10 bar with an initial H2O/CH4 ratio of 2.5:1. Sensitivity analysis is used to provide information about rate-limiting steps in the reaction network. The reaction intermediate CH* is found to be the most important carbon-containing intermediate. CH4(g) adsorption as well as the reactions CH* + O* → CHO* and CH* + OH* → CHOH* are found to be the most sensitive reactions in the mechanism. Consistent accounting for entropic effects was found to be important in obtaining reasonable surface coverages of reaction intermediates, which can influence the determination of active reforming pathways on the catalyst surface.</description><subject>C: Surfaces, Interfaces, Catalysis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEUxIMoWKsHv0Eugj2sJtlN0j3K4p9iVdB6XmL2pU3pJjVJhYIf3l0rPXl6M8zvzWEQOqfkihJGr5frMRGcyc8DNKBlzjJZcH6414U8RicxLgnhOaH5AH1Xvl1vkkrWO7XCE_cFMdn5r8fe4NkCQuv1AlobU9hi5Rr8aB0kq2OfvyVQLX6CtFAO8CsYH1rr5rj7fraXlNIR3rgGQhepVVdhNa68a2zfH0_RkVGrCGd_d4je725n1UM2fbmfVDfTTOWCpUzSknOiDKOyoELrD8JJaUrekEbLQipRdMYAk5pJ0zDoacFMKWgx5oKX-RCNdr06-BgDmHodbKvCtqak7mer97N17MWOVTrWS78J3SzxH-4HIhNstA</recordid><startdate>20090326</startdate><enddate>20090326</enddate><creator>Blaylock, D. Wayne</creator><creator>Ogura, Teppei</creator><creator>Green, William H</creator><creator>Beran, Gregory J. O</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090326</creationdate><title>Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions</title><author>Blaylock, D. Wayne ; Ogura, Teppei ; Green, William H ; Beran, Gregory J. O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-719550af217416ccb0509f95d0dc747a64f95fe27c27fd2e955062f9614856593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>C: Surfaces, Interfaces, Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blaylock, D. Wayne</creatorcontrib><creatorcontrib>Ogura, Teppei</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><creatorcontrib>Beran, Gregory J. O</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blaylock, D. Wayne</au><au>Ogura, Teppei</au><au>Green, William H</au><au>Beran, Gregory J. O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2009-03-26</date><risdate>2009</risdate><volume>113</volume><issue>12</issue><spage>4898</spage><epage>4908</epage><pages>4898-4908</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The reaction pathways and kinetics of steam methane reforming (SMR) over Ni(111) are investigated using plane wave density functional theory. The thermochemical data are used to develop a microkinetic model of SMR that allows for the investigation of reforming pathways and the most abundant reaction intermediates on the catalyst surface at industrially relevant temperatures and pressures. Pairing the kinetic model with a statistical thermodynamic treatment, surface behavior under a wide range of temperatures, pressures, and initial concentrations can be examined. We present our results at T = 800 °C and P = 10 bar with an initial H2O/CH4 ratio of 2.5:1. Sensitivity analysis is used to provide information about rate-limiting steps in the reaction network. The reaction intermediate CH* is found to be the most important carbon-containing intermediate. CH4(g) adsorption as well as the reactions CH* + O* → CHO* and CH* + OH* → CHOH* are found to be the most sensitive reactions in the mechanism. Consistent accounting for entropic effects was found to be important in obtaining reasonable surface coverages of reaction intermediates, which can influence the determination of active reforming pathways on the catalyst surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp806527q</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2009-03, Vol.113 (12), p.4898-4908
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp806527q
source ACS Publications
subjects C: Surfaces, Interfaces, Catalysis
title Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Investigation%20of%20Thermochemistry%20and%20Kinetics%20of%20Steam%20Methane%20Reforming%20on%20Ni(111)%20under%20Realistic%20Conditions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Blaylock,%20D.%20Wayne&rft.date=2009-03-26&rft.volume=113&rft.issue=12&rft.spage=4898&rft.epage=4908&rft.pages=4898-4908&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp806527q&rft_dat=%3Cacs_cross%3Ec597181755%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true