Time-Dependent Density Functional Theory As a Tool for Isomer Assignments of Hydrogen-Bonded Solute·Solvent Clusters

Can isomer structures of hydrogen-bonded solute·solvent clusters be assigned by correlating gas-phase experimental S0 ↔ S1 transitions with vertical or adiabatic excitation energies calculated by time-dependent density functional theory (TD-DFT)? We study this question for 7-hydroxyquinoline (7HQ),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2008-06, Vol.112 (25), p.5566-5572
Hauptverfasser: Thut, Markus, Tanner, Christian, Steinlin, Andreas, Leutwyler, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5572
container_issue 25
container_start_page 5566
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 112
creator Thut, Markus
Tanner, Christian
Steinlin, Andreas
Leutwyler, Samuel
description Can isomer structures of hydrogen-bonded solute·solvent clusters be assigned by correlating gas-phase experimental S0 ↔ S1 transitions with vertical or adiabatic excitation energies calculated by time-dependent density functional theory (TD-DFT)? We study this question for 7-hydroxyquinoline (7HQ), for which an experimental database of 19 complexes and clusters is available. The main advantage of the adiabatic TD-B3LYP S0 ↔ S1 excitations is the small absolute error compared to experiment, while for the calculated vertical excitations, the average offset is +1810 cm−1. However, the empirically adjusted vertical excitations correlate more closely with the experimental transition energies, with a standard deviation of σ = 72 cm−1. For the analogous correlation with calculated adiabatic TD-DFT excitations, the standard deviation is σ = 157 cm−1. The vertical and adiabatic TD-DFT correlation methods are applied for the identification of isomers of the 7-hydroxyquinoline·(MeOH) n , n = 1−3 clusters [ Matsumoto Y. ; Ebata T. ; Mikami N. J. Phys. Chem. B 2002, 106, 5591]. These confirm that the vertical TD-DFT/experimental correlation yields more effective isomer assignments.
doi_str_mv 10.1021/jp801044x
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp801044x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a401301399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a278t-75d8b06c0508bf5569747ed1c42a27a2d9c6a916aaa808d17b359efccde579143</originalsourceid><addsrcrecordid>eNptkL1OwzAURi0EEqUw8AZeGBgMdhLHydhfWqkSiAaGLpZrOyUliSs7Qc2TsfNkuCrqxPRdXZ17dPUBcEvwA8EBedzuEkxwFO3PQI_QACMaEHruZ5ykiMZhegmunNtijEkYRD3QZkWl0VjvdK103cCxrl3RdHDa1rIpTC1KmH1oYzs4cFDAzJgS5sbCuTOVtn7pik1d-UsHTQ5nnbJmo2s0NF6n4NKUbaN_vn1-HeyjsnWNtu4aXOSidPrmL_vgbTrJRjO0eH6ajwYLJAKWNIhRlaxxLDHFyTqnNE5ZxLQiMgo8IAKVylikJBZCJDhRhK1DmupcSqUpS0kU9sH90Sutcc7qnO9sUQnbcYL5oS9-6suz6MgW_sX9CRT2k8csZJRnL0v-vly9rqZDwjPP3x15IR3fmtb6rtw_3l-Hw3uS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-Dependent Density Functional Theory As a Tool for Isomer Assignments of Hydrogen-Bonded Solute·Solvent Clusters</title><source>ACS Publications</source><creator>Thut, Markus ; Tanner, Christian ; Steinlin, Andreas ; Leutwyler, Samuel</creator><creatorcontrib>Thut, Markus ; Tanner, Christian ; Steinlin, Andreas ; Leutwyler, Samuel</creatorcontrib><description>Can isomer structures of hydrogen-bonded solute·solvent clusters be assigned by correlating gas-phase experimental S0 ↔ S1 transitions with vertical or adiabatic excitation energies calculated by time-dependent density functional theory (TD-DFT)? We study this question for 7-hydroxyquinoline (7HQ), for which an experimental database of 19 complexes and clusters is available. The main advantage of the adiabatic TD-B3LYP S0 ↔ S1 excitations is the small absolute error compared to experiment, while for the calculated vertical excitations, the average offset is +1810 cm−1. However, the empirically adjusted vertical excitations correlate more closely with the experimental transition energies, with a standard deviation of σ = 72 cm−1. For the analogous correlation with calculated adiabatic TD-DFT excitations, the standard deviation is σ = 157 cm−1. The vertical and adiabatic TD-DFT correlation methods are applied for the identification of isomers of the 7-hydroxyquinoline·(MeOH) n , n = 1−3 clusters [ Matsumoto Y. ; Ebata T. ; Mikami N. J. Phys. Chem. B 2002, 106, 5591]. These confirm that the vertical TD-DFT/experimental correlation yields more effective isomer assignments.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp801044x</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>A: Dynamics, Clusters, Excited States</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2008-06, Vol.112 (25), p.5566-5572</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a278t-75d8b06c0508bf5569747ed1c42a27a2d9c6a916aaa808d17b359efccde579143</citedby><cites>FETCH-LOGICAL-a278t-75d8b06c0508bf5569747ed1c42a27a2d9c6a916aaa808d17b359efccde579143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp801044x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp801044x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Thut, Markus</creatorcontrib><creatorcontrib>Tanner, Christian</creatorcontrib><creatorcontrib>Steinlin, Andreas</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><title>Time-Dependent Density Functional Theory As a Tool for Isomer Assignments of Hydrogen-Bonded Solute·Solvent Clusters</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Can isomer structures of hydrogen-bonded solute·solvent clusters be assigned by correlating gas-phase experimental S0 ↔ S1 transitions with vertical or adiabatic excitation energies calculated by time-dependent density functional theory (TD-DFT)? We study this question for 7-hydroxyquinoline (7HQ), for which an experimental database of 19 complexes and clusters is available. The main advantage of the adiabatic TD-B3LYP S0 ↔ S1 excitations is the small absolute error compared to experiment, while for the calculated vertical excitations, the average offset is +1810 cm−1. However, the empirically adjusted vertical excitations correlate more closely with the experimental transition energies, with a standard deviation of σ = 72 cm−1. For the analogous correlation with calculated adiabatic TD-DFT excitations, the standard deviation is σ = 157 cm−1. The vertical and adiabatic TD-DFT correlation methods are applied for the identification of isomers of the 7-hydroxyquinoline·(MeOH) n , n = 1−3 clusters [ Matsumoto Y. ; Ebata T. ; Mikami N. J. Phys. Chem. B 2002, 106, 5591]. These confirm that the vertical TD-DFT/experimental correlation yields more effective isomer assignments.</description><subject>A: Dynamics, Clusters, Excited States</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkL1OwzAURi0EEqUw8AZeGBgMdhLHydhfWqkSiAaGLpZrOyUliSs7Qc2TsfNkuCrqxPRdXZ17dPUBcEvwA8EBedzuEkxwFO3PQI_QACMaEHruZ5ykiMZhegmunNtijEkYRD3QZkWl0VjvdK103cCxrl3RdHDa1rIpTC1KmH1oYzs4cFDAzJgS5sbCuTOVtn7pik1d-UsHTQ5nnbJmo2s0NF6n4NKUbaN_vn1-HeyjsnWNtu4aXOSidPrmL_vgbTrJRjO0eH6ajwYLJAKWNIhRlaxxLDHFyTqnNE5ZxLQiMgo8IAKVylikJBZCJDhRhK1DmupcSqUpS0kU9sH90Sutcc7qnO9sUQnbcYL5oS9-6suz6MgW_sX9CRT2k8csZJRnL0v-vly9rqZDwjPP3x15IR3fmtb6rtw_3l-Hw3uS</recordid><startdate>20080626</startdate><enddate>20080626</enddate><creator>Thut, Markus</creator><creator>Tanner, Christian</creator><creator>Steinlin, Andreas</creator><creator>Leutwyler, Samuel</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080626</creationdate><title>Time-Dependent Density Functional Theory As a Tool for Isomer Assignments of Hydrogen-Bonded Solute·Solvent Clusters</title><author>Thut, Markus ; Tanner, Christian ; Steinlin, Andreas ; Leutwyler, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a278t-75d8b06c0508bf5569747ed1c42a27a2d9c6a916aaa808d17b359efccde579143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>A: Dynamics, Clusters, Excited States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thut, Markus</creatorcontrib><creatorcontrib>Tanner, Christian</creatorcontrib><creatorcontrib>Steinlin, Andreas</creatorcontrib><creatorcontrib>Leutwyler, Samuel</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thut, Markus</au><au>Tanner, Christian</au><au>Steinlin, Andreas</au><au>Leutwyler, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Dependent Density Functional Theory As a Tool for Isomer Assignments of Hydrogen-Bonded Solute·Solvent Clusters</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2008-06-26</date><risdate>2008</risdate><volume>112</volume><issue>25</issue><spage>5566</spage><epage>5572</epage><pages>5566-5572</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Can isomer structures of hydrogen-bonded solute·solvent clusters be assigned by correlating gas-phase experimental S0 ↔ S1 transitions with vertical or adiabatic excitation energies calculated by time-dependent density functional theory (TD-DFT)? We study this question for 7-hydroxyquinoline (7HQ), for which an experimental database of 19 complexes and clusters is available. The main advantage of the adiabatic TD-B3LYP S0 ↔ S1 excitations is the small absolute error compared to experiment, while for the calculated vertical excitations, the average offset is +1810 cm−1. However, the empirically adjusted vertical excitations correlate more closely with the experimental transition energies, with a standard deviation of σ = 72 cm−1. For the analogous correlation with calculated adiabatic TD-DFT excitations, the standard deviation is σ = 157 cm−1. The vertical and adiabatic TD-DFT correlation methods are applied for the identification of isomers of the 7-hydroxyquinoline·(MeOH) n , n = 1−3 clusters [ Matsumoto Y. ; Ebata T. ; Mikami N. J. Phys. Chem. B 2002, 106, 5591]. These confirm that the vertical TD-DFT/experimental correlation yields more effective isomer assignments.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp801044x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2008-06, Vol.112 (25), p.5566-5572
issn 1089-5639
1520-5215
language eng
recordid cdi_crossref_primary_10_1021_jp801044x
source ACS Publications
subjects A: Dynamics, Clusters, Excited States
title Time-Dependent Density Functional Theory As a Tool for Isomer Assignments of Hydrogen-Bonded Solute·Solvent Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Dependent%20Density%20Functional%20Theory%20As%20a%20Tool%20for%20Isomer%20Assignments%20of%20Hydrogen-Bonded%20Solute%C2%B7Solvent%20Clusters&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Thut,%20Markus&rft.date=2008-06-26&rft.volume=112&rft.issue=25&rft.spage=5566&rft.epage=5572&rft.pages=5566-5572&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp801044x&rft_dat=%3Cacs_cross%3Ea401301399%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true