Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111)

The reactivity of heterogeneous metal catalysts can be a strong function of the coverage of adsorbates. For example, Pt-catalyzed NO oxidation to NO2 requires high concentrations of chemisorbed (surface-bound) O, but the development of surface oxides is detrimental to reaction kinetics. Quantifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Physical Chemistry C 2008-07, Vol.112 (26), p.9559-9572
Hauptverfasser: Getman, Rachel B, Xu, Ye, Schneider, William F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9572
container_issue 26
container_start_page 9559
container_title Journal of Physical Chemistry C
container_volume 112
creator Getman, Rachel B
Xu, Ye
Schneider, William F
description The reactivity of heterogeneous metal catalysts can be a strong function of the coverage of adsorbates. For example, Pt-catalyzed NO oxidation to NO2 requires high concentrations of chemisorbed (surface-bound) O, but the development of surface oxides is detrimental to reaction kinetics. Quantifying the structures, properties, and especially the conditions that produce various adsorbate coverages is essential to developing qualitatively and quantitatively correct models of surface reactivity. In this work, we examine these ideas in the context of oxidation reactions on Pt(111), the lowest energy face of bulk Pt. We use extensive supercell density functional theory (DFT) calculations to catalog and characterize the stable binding sites and arrangements of chemisorbed O on Pt(111), as a function of O coverage, θ. O atoms are found to uniformly prefer FCC binding sites and to arrange to minimize various destabilizing interactions with neighbor O. These destabilizing interactions are shown to have electronic and strain components that can either reinforce or oppose one another depending upon O−O separation. Because of the nature and magnitudes of these lateral interactions, the thermodynamically stable O orderings partition into four coverage regimes of decreasing adsorption energy: 0 < θ ≤ 1/4 monolayer (ML), 1/4 < θ ≤ 1/2 ML, 1/2 < θ ≤ 2/3 ML, and 2/3 < θ ≤ 1 ML. We use equilibrium models to quantify the oxygen chemical potentials μO necessary to access each of these regimes. These equilibrium models can be used to relate surface coverage to various external environmental conditions and assumptions about relevant reaction equilibria: dissociative equilibrium of the surface with O2 (g) can produce coverages up to 1/2 ML; either NO2 decomposition or “NO-assisted” O2 dissociation can access coverages approaching 2/3 ML, as observed during NO oxidation catalysis, and equilibrium with a solid-oxygen storage material, like ceria-zirconia, can buffer equilibrium coverages at a constant 1/4 ML O. These various oxidation reaction energies can be summarized in a single “Ellingham” free energy diagram, providing a convenient representation of the relationship between surface coverage and reaction thermodynamics, and a useful guide toward relevant coverage regimes for more detailed study of reaction kinetics.
doi_str_mv 10.1021/jp800905a
format Article
fullrecord <record><control><sourceid>istex_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp800905a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_RZX4F936_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-4e4ea6a8eae4f4834f55a97e9a098c8c7e4eb5f42503d3e4683583cc396b2803</originalsourceid><addsrcrecordid>eNptkEFLAzEQhRdRsFYP_oP1INjDarJJdpOj1LYKhRbdg3gJaTprU91kSaK0_96VlZ6EgXkwH294L0kuMbrFKMd325YjJBBTR8kAC5JnJWXs-KBpeZqchbBFiBGEySCZVRvwjVvvrWqMDqmr04n9Nt7ZBmzMHqAFu-5Uutjt38Gm4w00JjjfRuNs2s0y3mCMR-fJSa0-A1z87WFSTSfV-DGbL2ZP4_t5pmhexIwCBVUoDgpoTTmhNWNKlCAUElxzXXb3FatpzhBZE6AFJ4wTrYkoVjlHZJhc9bYuRCODNhH0RjtrQUcpCOWIdsyoZ7R3IXioZetNo_xeYiR_S5KHkjo261kTIuwOoPIfsihJyWS1fJHPb690Kkghf_9f97zSQW7dl7dd2H98fwD-IXPy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111)</title><source>ACS Publications</source><creator>Getman, Rachel B ; Xu, Ye ; Schneider, William F</creator><creatorcontrib>Getman, Rachel B ; Xu, Ye ; Schneider, William F ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Nanophase Materials Sciences</creatorcontrib><description>The reactivity of heterogeneous metal catalysts can be a strong function of the coverage of adsorbates. For example, Pt-catalyzed NO oxidation to NO2 requires high concentrations of chemisorbed (surface-bound) O, but the development of surface oxides is detrimental to reaction kinetics. Quantifying the structures, properties, and especially the conditions that produce various adsorbate coverages is essential to developing qualitatively and quantitatively correct models of surface reactivity. In this work, we examine these ideas in the context of oxidation reactions on Pt(111), the lowest energy face of bulk Pt. We use extensive supercell density functional theory (DFT) calculations to catalog and characterize the stable binding sites and arrangements of chemisorbed O on Pt(111), as a function of O coverage, θ. O atoms are found to uniformly prefer FCC binding sites and to arrange to minimize various destabilizing interactions with neighbor O. These destabilizing interactions are shown to have electronic and strain components that can either reinforce or oppose one another depending upon O−O separation. Because of the nature and magnitudes of these lateral interactions, the thermodynamically stable O orderings partition into four coverage regimes of decreasing adsorption energy: 0 &lt; θ ≤ 1/4 monolayer (ML), 1/4 &lt; θ ≤ 1/2 ML, 1/2 &lt; θ ≤ 2/3 ML, and 2/3 &lt; θ ≤ 1 ML. We use equilibrium models to quantify the oxygen chemical potentials μO necessary to access each of these regimes. These equilibrium models can be used to relate surface coverage to various external environmental conditions and assumptions about relevant reaction equilibria: dissociative equilibrium of the surface with O2 (g) can produce coverages up to 1/2 ML; either NO2 decomposition or “NO-assisted” O2 dissociation can access coverages approaching 2/3 ML, as observed during NO oxidation catalysis, and equilibrium with a solid-oxygen storage material, like ceria-zirconia, can buffer equilibrium coverages at a constant 1/4 ML O. These various oxidation reaction energies can be summarized in a single “Ellingham” free energy diagram, providing a convenient representation of the relationship between surface coverage and reaction thermodynamics, and a useful guide toward relevant coverage regimes for more detailed study of reaction kinetics.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp800905a</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CATALYSTS ; CHEMISORPTION ; DENSITY FUNCTIONAL METHOD ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; KINETICS ; OXYGEN ; PLATINUM ; SORPTIVE PROPERTIES ; THERMODYNAMICS</subject><ispartof>Journal of Physical Chemistry C, 2008-07, Vol.112 (26), p.9559-9572</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-4e4ea6a8eae4f4834f55a97e9a098c8c7e4eb5f42503d3e4683583cc396b2803</citedby><cites>FETCH-LOGICAL-a426t-4e4ea6a8eae4f4834f55a97e9a098c8c7e4eb5f42503d3e4683583cc396b2803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp800905a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp800905a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/934804$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Getman, Rachel B</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><title>Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111)</title><title>Journal of Physical Chemistry C</title><addtitle>J. Phys. Chem. C</addtitle><description>The reactivity of heterogeneous metal catalysts can be a strong function of the coverage of adsorbates. For example, Pt-catalyzed NO oxidation to NO2 requires high concentrations of chemisorbed (surface-bound) O, but the development of surface oxides is detrimental to reaction kinetics. Quantifying the structures, properties, and especially the conditions that produce various adsorbate coverages is essential to developing qualitatively and quantitatively correct models of surface reactivity. In this work, we examine these ideas in the context of oxidation reactions on Pt(111), the lowest energy face of bulk Pt. We use extensive supercell density functional theory (DFT) calculations to catalog and characterize the stable binding sites and arrangements of chemisorbed O on Pt(111), as a function of O coverage, θ. O atoms are found to uniformly prefer FCC binding sites and to arrange to minimize various destabilizing interactions with neighbor O. These destabilizing interactions are shown to have electronic and strain components that can either reinforce or oppose one another depending upon O−O separation. Because of the nature and magnitudes of these lateral interactions, the thermodynamically stable O orderings partition into four coverage regimes of decreasing adsorption energy: 0 &lt; θ ≤ 1/4 monolayer (ML), 1/4 &lt; θ ≤ 1/2 ML, 1/2 &lt; θ ≤ 2/3 ML, and 2/3 &lt; θ ≤ 1 ML. We use equilibrium models to quantify the oxygen chemical potentials μO necessary to access each of these regimes. These equilibrium models can be used to relate surface coverage to various external environmental conditions and assumptions about relevant reaction equilibria: dissociative equilibrium of the surface with O2 (g) can produce coverages up to 1/2 ML; either NO2 decomposition or “NO-assisted” O2 dissociation can access coverages approaching 2/3 ML, as observed during NO oxidation catalysis, and equilibrium with a solid-oxygen storage material, like ceria-zirconia, can buffer equilibrium coverages at a constant 1/4 ML O. These various oxidation reaction energies can be summarized in a single “Ellingham” free energy diagram, providing a convenient representation of the relationship between surface coverage and reaction thermodynamics, and a useful guide toward relevant coverage regimes for more detailed study of reaction kinetics.</description><subject>CATALYSTS</subject><subject>CHEMISORPTION</subject><subject>DENSITY FUNCTIONAL METHOD</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>KINETICS</subject><subject>OXYGEN</subject><subject>PLATINUM</subject><subject>SORPTIVE PROPERTIES</subject><subject>THERMODYNAMICS</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkEFLAzEQhRdRsFYP_oP1INjDarJJdpOj1LYKhRbdg3gJaTprU91kSaK0_96VlZ6EgXkwH294L0kuMbrFKMd325YjJBBTR8kAC5JnJWXs-KBpeZqchbBFiBGEySCZVRvwjVvvrWqMDqmr04n9Nt7ZBmzMHqAFu-5Uutjt38Gm4w00JjjfRuNs2s0y3mCMR-fJSa0-A1z87WFSTSfV-DGbL2ZP4_t5pmhexIwCBVUoDgpoTTmhNWNKlCAUElxzXXb3FatpzhBZE6AFJ4wTrYkoVjlHZJhc9bYuRCODNhH0RjtrQUcpCOWIdsyoZ7R3IXioZetNo_xeYiR_S5KHkjo261kTIuwOoPIfsihJyWS1fJHPb690Kkghf_9f97zSQW7dl7dd2H98fwD-IXPy</recordid><startdate>20080703</startdate><enddate>20080703</enddate><creator>Getman, Rachel B</creator><creator>Xu, Ye</creator><creator>Schneider, William F</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20080703</creationdate><title>Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111)</title><author>Getman, Rachel B ; Xu, Ye ; Schneider, William F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-4e4ea6a8eae4f4834f55a97e9a098c8c7e4eb5f42503d3e4683583cc396b2803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CATALYSTS</topic><topic>CHEMISORPTION</topic><topic>DENSITY FUNCTIONAL METHOD</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>KINETICS</topic><topic>OXYGEN</topic><topic>PLATINUM</topic><topic>SORPTIVE PROPERTIES</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Getman, Rachel B</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Schneider, William F</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of Physical Chemistry C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Getman, Rachel B</au><au>Xu, Ye</au><au>Schneider, William F</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Nanophase Materials Sciences</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111)</atitle><jtitle>Journal of Physical Chemistry C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2008-07-03</date><risdate>2008</risdate><volume>112</volume><issue>26</issue><spage>9559</spage><epage>9572</epage><pages>9559-9572</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The reactivity of heterogeneous metal catalysts can be a strong function of the coverage of adsorbates. For example, Pt-catalyzed NO oxidation to NO2 requires high concentrations of chemisorbed (surface-bound) O, but the development of surface oxides is detrimental to reaction kinetics. Quantifying the structures, properties, and especially the conditions that produce various adsorbate coverages is essential to developing qualitatively and quantitatively correct models of surface reactivity. In this work, we examine these ideas in the context of oxidation reactions on Pt(111), the lowest energy face of bulk Pt. We use extensive supercell density functional theory (DFT) calculations to catalog and characterize the stable binding sites and arrangements of chemisorbed O on Pt(111), as a function of O coverage, θ. O atoms are found to uniformly prefer FCC binding sites and to arrange to minimize various destabilizing interactions with neighbor O. These destabilizing interactions are shown to have electronic and strain components that can either reinforce or oppose one another depending upon O−O separation. Because of the nature and magnitudes of these lateral interactions, the thermodynamically stable O orderings partition into four coverage regimes of decreasing adsorption energy: 0 &lt; θ ≤ 1/4 monolayer (ML), 1/4 &lt; θ ≤ 1/2 ML, 1/2 &lt; θ ≤ 2/3 ML, and 2/3 &lt; θ ≤ 1 ML. We use equilibrium models to quantify the oxygen chemical potentials μO necessary to access each of these regimes. These equilibrium models can be used to relate surface coverage to various external environmental conditions and assumptions about relevant reaction equilibria: dissociative equilibrium of the surface with O2 (g) can produce coverages up to 1/2 ML; either NO2 decomposition or “NO-assisted” O2 dissociation can access coverages approaching 2/3 ML, as observed during NO oxidation catalysis, and equilibrium with a solid-oxygen storage material, like ceria-zirconia, can buffer equilibrium coverages at a constant 1/4 ML O. These various oxidation reaction energies can be summarized in a single “Ellingham” free energy diagram, providing a convenient representation of the relationship between surface coverage and reaction thermodynamics, and a useful guide toward relevant coverage regimes for more detailed study of reaction kinetics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp800905a</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of Physical Chemistry C, 2008-07, Vol.112 (26), p.9559-9572
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp800905a
source ACS Publications
subjects CATALYSTS
CHEMISORPTION
DENSITY FUNCTIONAL METHOD
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
KINETICS
OXYGEN
PLATINUM
SORPTIVE PROPERTIES
THERMODYNAMICS
title Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20of%20Environment-Dependent%20Oxygen%20Chemisorption%20on%20Pt(111)&rft.jtitle=Journal%20of%20Physical%20Chemistry%20C&rft.au=Getman,%20Rachel%20B&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2008-07-03&rft.volume=112&rft.issue=26&rft.spage=9559&rft.epage=9572&rft.pages=9559-9572&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp800905a&rft_dat=%3Cistex_osti_%3Eark_67375_TPS_RZX4F936_0%3C/istex_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true