Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: Self-Organized Growth, Structure, and Novel Luminescence

We have used pulsed-laser deposition, following a specific sequence of heating and cooling phases, to grow ZnO nanorods on ZnO buffer/Si(100) substrates, in a 600 mT oxygen ambient, without catalyst. In these conditions, the nanorods preferentially self-organize in the form of vertically aligned, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-03, Vol.119 (9), p.4848-4855
Hauptverfasser: Inguva, Saikumar, Marka, Sandeep Kumar, Vijayaraghavan, Rajani K, McGlynn, Enda, Srikanth, Vadali V. S. S, Mosnier, J.-P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4855
container_issue 9
container_start_page 4848
container_title Journal of physical chemistry. C
container_volume 119
creator Inguva, Saikumar
Marka, Sandeep Kumar
Vijayaraghavan, Rajani K
McGlynn, Enda
Srikanth, Vadali V. S. S
Mosnier, J.-P
description We have used pulsed-laser deposition, following a specific sequence of heating and cooling phases, to grow ZnO nanorods on ZnO buffer/Si(100) substrates, in a 600 mT oxygen ambient, without catalyst. In these conditions, the nanorods preferentially self-organize in the form of vertically aligned, core/shell structures. X-ray diffraction analyses, obtained from 2θ–ω and pole figure scans, shows a crystalline (wurtzite) ZnO deposit with uniform c-axis orientation normal to the substrate. Field emission scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, and selected area electron diffraction studies revealed that the nanorods have a crystalline core and an amorphous shell. The low-temperature (13 K) photoluminescence featured a strong I6 (3.36 eV) line emission, structured green band emission, and a hitherto unreported broad emission at 3.331 eV. Further studies on the 3.331 eV band showed the involvement of deeply bound excitonic constituents in a single electron–hole recombination. The body of structural data suggests that the 3.331 eV emission can be linked to the range of defects associated with the unique crystalline ZnO/amorphous ZnO core/shell structure of the nanorods. The relevance of the work is discussed in the context of the current production methods of core/shell nanorods and their domains of application.
doi_str_mv 10.1021/jp511783c
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp511783c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b062250186</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-ed30e116f8bbbd202887c1906cde254450b4f1e9a84dd0eddb2156cea4b9d3c73</originalsourceid><addsrcrecordid>eNptkE1LAzEYhIMoWKsH_0EuHoSuzWd311tZahVKe6hevCzZ5F23NU1KsqvUX29LpSdPMwMPwzAI3VLyQAmjw_VWUppmXJ-hHs05S1Ih5fnJi_QSXcW4JkRyQnkPfRZhF1tl7coBfneL4Xjjw7bxXTwkXPgAw2UD1uK5cj54Ex_xEmydLMKHcqsfMHga_HfbDPCyDZ1uuwADrJzBc_8FFs-6zb45anAartFFrWyEmz_to7enyWvxnMwW05diPEsUy0WbgOEEKB3VWVVVhhGWZammORlpA0wKIUklagq5yoQxBIypGJUjDUpUueE65X10f-zVwccYoC63YbVRYVdSUh5eKk8v7dm7I6t0LNe-C26_7B_uFxTbZ7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: Self-Organized Growth, Structure, and Novel Luminescence</title><source>American Chemical Society Journals</source><creator>Inguva, Saikumar ; Marka, Sandeep Kumar ; Vijayaraghavan, Rajani K ; McGlynn, Enda ; Srikanth, Vadali V. S. S ; Mosnier, J.-P</creator><creatorcontrib>Inguva, Saikumar ; Marka, Sandeep Kumar ; Vijayaraghavan, Rajani K ; McGlynn, Enda ; Srikanth, Vadali V. S. S ; Mosnier, J.-P</creatorcontrib><description>We have used pulsed-laser deposition, following a specific sequence of heating and cooling phases, to grow ZnO nanorods on ZnO buffer/Si(100) substrates, in a 600 mT oxygen ambient, without catalyst. In these conditions, the nanorods preferentially self-organize in the form of vertically aligned, core/shell structures. X-ray diffraction analyses, obtained from 2θ–ω and pole figure scans, shows a crystalline (wurtzite) ZnO deposit with uniform c-axis orientation normal to the substrate. Field emission scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, and selected area electron diffraction studies revealed that the nanorods have a crystalline core and an amorphous shell. The low-temperature (13 K) photoluminescence featured a strong I6 (3.36 eV) line emission, structured green band emission, and a hitherto unreported broad emission at 3.331 eV. Further studies on the 3.331 eV band showed the involvement of deeply bound excitonic constituents in a single electron–hole recombination. The body of structural data suggests that the 3.331 eV emission can be linked to the range of defects associated with the unique crystalline ZnO/amorphous ZnO core/shell structure of the nanorods. The relevance of the work is discussed in the context of the current production methods of core/shell nanorods and their domains of application.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp511783c</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-03, Vol.119 (9), p.4848-4855</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a294t-ed30e116f8bbbd202887c1906cde254450b4f1e9a84dd0eddb2156cea4b9d3c73</citedby><cites>FETCH-LOGICAL-a294t-ed30e116f8bbbd202887c1906cde254450b4f1e9a84dd0eddb2156cea4b9d3c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp511783c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp511783c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Inguva, Saikumar</creatorcontrib><creatorcontrib>Marka, Sandeep Kumar</creatorcontrib><creatorcontrib>Vijayaraghavan, Rajani K</creatorcontrib><creatorcontrib>McGlynn, Enda</creatorcontrib><creatorcontrib>Srikanth, Vadali V. S. S</creatorcontrib><creatorcontrib>Mosnier, J.-P</creatorcontrib><title>Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: Self-Organized Growth, Structure, and Novel Luminescence</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We have used pulsed-laser deposition, following a specific sequence of heating and cooling phases, to grow ZnO nanorods on ZnO buffer/Si(100) substrates, in a 600 mT oxygen ambient, without catalyst. In these conditions, the nanorods preferentially self-organize in the form of vertically aligned, core/shell structures. X-ray diffraction analyses, obtained from 2θ–ω and pole figure scans, shows a crystalline (wurtzite) ZnO deposit with uniform c-axis orientation normal to the substrate. Field emission scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, and selected area electron diffraction studies revealed that the nanorods have a crystalline core and an amorphous shell. The low-temperature (13 K) photoluminescence featured a strong I6 (3.36 eV) line emission, structured green band emission, and a hitherto unreported broad emission at 3.331 eV. Further studies on the 3.331 eV band showed the involvement of deeply bound excitonic constituents in a single electron–hole recombination. The body of structural data suggests that the 3.331 eV emission can be linked to the range of defects associated with the unique crystalline ZnO/amorphous ZnO core/shell structure of the nanorods. The relevance of the work is discussed in the context of the current production methods of core/shell nanorods and their domains of application.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEYhIMoWKsH_0EuHoSuzWd311tZahVKe6hevCzZ5F23NU1KsqvUX29LpSdPMwMPwzAI3VLyQAmjw_VWUppmXJ-hHs05S1Ih5fnJi_QSXcW4JkRyQnkPfRZhF1tl7coBfneL4Xjjw7bxXTwkXPgAw2UD1uK5cj54Ex_xEmydLMKHcqsfMHga_HfbDPCyDZ1uuwADrJzBc_8FFs-6zb45anAartFFrWyEmz_to7enyWvxnMwW05diPEsUy0WbgOEEKB3VWVVVhhGWZammORlpA0wKIUklagq5yoQxBIypGJUjDUpUueE65X10f-zVwccYoC63YbVRYVdSUh5eKk8v7dm7I6t0LNe-C26_7B_uFxTbZ7E</recordid><startdate>20150305</startdate><enddate>20150305</enddate><creator>Inguva, Saikumar</creator><creator>Marka, Sandeep Kumar</creator><creator>Vijayaraghavan, Rajani K</creator><creator>McGlynn, Enda</creator><creator>Srikanth, Vadali V. S. S</creator><creator>Mosnier, J.-P</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150305</creationdate><title>Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: Self-Organized Growth, Structure, and Novel Luminescence</title><author>Inguva, Saikumar ; Marka, Sandeep Kumar ; Vijayaraghavan, Rajani K ; McGlynn, Enda ; Srikanth, Vadali V. S. S ; Mosnier, J.-P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-ed30e116f8bbbd202887c1906cde254450b4f1e9a84dd0eddb2156cea4b9d3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inguva, Saikumar</creatorcontrib><creatorcontrib>Marka, Sandeep Kumar</creatorcontrib><creatorcontrib>Vijayaraghavan, Rajani K</creatorcontrib><creatorcontrib>McGlynn, Enda</creatorcontrib><creatorcontrib>Srikanth, Vadali V. S. S</creatorcontrib><creatorcontrib>Mosnier, J.-P</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inguva, Saikumar</au><au>Marka, Sandeep Kumar</au><au>Vijayaraghavan, Rajani K</au><au>McGlynn, Enda</au><au>Srikanth, Vadali V. S. S</au><au>Mosnier, J.-P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: Self-Organized Growth, Structure, and Novel Luminescence</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-03-05</date><risdate>2015</risdate><volume>119</volume><issue>9</issue><spage>4848</spage><epage>4855</epage><pages>4848-4855</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We have used pulsed-laser deposition, following a specific sequence of heating and cooling phases, to grow ZnO nanorods on ZnO buffer/Si(100) substrates, in a 600 mT oxygen ambient, without catalyst. In these conditions, the nanorods preferentially self-organize in the form of vertically aligned, core/shell structures. X-ray diffraction analyses, obtained from 2θ–ω and pole figure scans, shows a crystalline (wurtzite) ZnO deposit with uniform c-axis orientation normal to the substrate. Field emission scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, and selected area electron diffraction studies revealed that the nanorods have a crystalline core and an amorphous shell. The low-temperature (13 K) photoluminescence featured a strong I6 (3.36 eV) line emission, structured green band emission, and a hitherto unreported broad emission at 3.331 eV. Further studies on the 3.331 eV band showed the involvement of deeply bound excitonic constituents in a single electron–hole recombination. The body of structural data suggests that the 3.331 eV emission can be linked to the range of defects associated with the unique crystalline ZnO/amorphous ZnO core/shell structure of the nanorods. The relevance of the work is discussed in the context of the current production methods of core/shell nanorods and their domains of application.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp511783c</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-03, Vol.119 (9), p.4848-4855
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp511783c
source American Chemical Society Journals
title Crystalline ZnO/Amorphous ZnO Core/Shell Nanorods: Self-Organized Growth, Structure, and Novel Luminescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystalline%20ZnO/Amorphous%20ZnO%20Core/Shell%20Nanorods:%20Self-Organized%20Growth,%20Structure,%20and%20Novel%20Luminescence&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Inguva,%20Saikumar&rft.date=2015-03-05&rft.volume=119&rft.issue=9&rft.spage=4848&rft.epage=4855&rft.pages=4848-4855&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp511783c&rft_dat=%3Cacs_cross%3Eb062250186%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true