Defect Characterization in Organic Semiconductors by Forward Bias Capacitance–Voltage (FB-CV) Analysis

Transport in organic semiconductors (OSCs) generally is poorer relative to their inorganic counterparts, mainly due to the high defect density that trap the free charge carriers. In this article, we demonstrate a new defect characterization method based on forward bias capacitance–voltage (FB-CV) me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2014-08, Vol.118 (31), p.17461-17466
Hauptverfasser: Ray, Biswajit, Baradwaj, Aditya G, Boudouris, Bryan W, Alam, Muhammad A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17466
container_issue 31
container_start_page 17461
container_title Journal of physical chemistry. C
container_volume 118
creator Ray, Biswajit
Baradwaj, Aditya G
Boudouris, Bryan W
Alam, Muhammad A
description Transport in organic semiconductors (OSCs) generally is poorer relative to their inorganic counterparts, mainly due to the high defect density that trap the free charge carriers. In this article, we demonstrate a new defect characterization method based on forward bias capacitance–voltage (FB-CV) measurements, which is appropriate for a broad range of low mobility OSCs with relatively large (>1.5 eV) band gaps. The characterization method, developed using numerical modeling and experimental data, relates the capacitance peaks in the FB-CV sweep to the deep level defect states; these states are inaccessible to classical reverse bias (RB) impedance spectroscopy. We validate the proposed technique by interpreting FB-CV data for organic photodiodes made of a commonly used semiconducting polymers, poly(3-hexylthiophene) (P3HT), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), and copper(II) phthalocyanine (CuPc). We find that P3HT and MEH-PPV contain both shallow and deep level states, but deep traps in CuPc depend on process conditions, consistent with reports in the recent literature. We demonstrate that these deep traps corrupt the interpretation of the classical Mott–Schottky analysis (of RB-CV data), leading to an underestimation of the built-in voltage of a device.
doi_str_mv 10.1021/jp505500r
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp505500r</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a456758984</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-4f26ee23301b879f860e0267e75e874e013e74500e86f544953464b7ee8d9ff33</originalsourceid><addsrcrecordid>eNptkMFKAzEURYMoWKsL_yAIgl2MJpNkMrNsR6tCoQu12yFNX9qUdlKSFKkr_8E_9EuMVLpy9d7icDn3InRJyS0lOb1bbgQRghB_hDq0YnkmuRDHh5_LU3QWwpIQwQhlHbS4BwM64nqhvNIRvP1Q0boW2xaP_Vy1VuMXWFvt2tlWR-cDnu7w0Pl35Wd4YFXAtdoobaNqNXx_fk3cKqo54JvhIKsnPdxv1WoXbDhHJ0atAlz83S56Gz681k_ZaPz4XPdHmWIijxk3eQGQs2Q3LWVlyoIAyQsJUkApOSRpSJUIgbIwgvNKMF7wqQQoZ5UxjHXR1T7XhWibkMRAL5J9m1o2lBZlTmWCentIexeCB9NsvF0rv2soaX53bA47JvZ6zyodmqXb-lQo_MP9AE4ecTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Defect Characterization in Organic Semiconductors by Forward Bias Capacitance–Voltage (FB-CV) Analysis</title><source>ACS Publications</source><creator>Ray, Biswajit ; Baradwaj, Aditya G ; Boudouris, Bryan W ; Alam, Muhammad A</creator><creatorcontrib>Ray, Biswajit ; Baradwaj, Aditya G ; Boudouris, Bryan W ; Alam, Muhammad A ; Energy Frontier Research Centers (EFRC) ; Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><description>Transport in organic semiconductors (OSCs) generally is poorer relative to their inorganic counterparts, mainly due to the high defect density that trap the free charge carriers. In this article, we demonstrate a new defect characterization method based on forward bias capacitance–voltage (FB-CV) measurements, which is appropriate for a broad range of low mobility OSCs with relatively large (&gt;1.5 eV) band gaps. The characterization method, developed using numerical modeling and experimental data, relates the capacitance peaks in the FB-CV sweep to the deep level defect states; these states are inaccessible to classical reverse bias (RB) impedance spectroscopy. We validate the proposed technique by interpreting FB-CV data for organic photodiodes made of a commonly used semiconducting polymers, poly(3-hexylthiophene) (P3HT), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), and copper(II) phthalocyanine (CuPc). We find that P3HT and MEH-PPV contain both shallow and deep level states, but deep traps in CuPc depend on process conditions, consistent with reports in the recent literature. We demonstrate that these deep traps corrupt the interpretation of the classical Mott–Schottky analysis (of RB-CV data), leading to an underestimation of the built-in voltage of a device.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp505500r</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)</subject><ispartof>Journal of physical chemistry. C, 2014-08, Vol.118 (31), p.17461-17466</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-4f26ee23301b879f860e0267e75e874e013e74500e86f544953464b7ee8d9ff33</citedby><cites>FETCH-LOGICAL-a352t-4f26ee23301b879f860e0267e75e874e013e74500e86f544953464b7ee8d9ff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp505500r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp505500r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1168217$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, Biswajit</creatorcontrib><creatorcontrib>Baradwaj, Aditya G</creatorcontrib><creatorcontrib>Boudouris, Bryan W</creatorcontrib><creatorcontrib>Alam, Muhammad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><title>Defect Characterization in Organic Semiconductors by Forward Bias Capacitance–Voltage (FB-CV) Analysis</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Transport in organic semiconductors (OSCs) generally is poorer relative to their inorganic counterparts, mainly due to the high defect density that trap the free charge carriers. In this article, we demonstrate a new defect characterization method based on forward bias capacitance–voltage (FB-CV) measurements, which is appropriate for a broad range of low mobility OSCs with relatively large (&gt;1.5 eV) band gaps. The characterization method, developed using numerical modeling and experimental data, relates the capacitance peaks in the FB-CV sweep to the deep level defect states; these states are inaccessible to classical reverse bias (RB) impedance spectroscopy. We validate the proposed technique by interpreting FB-CV data for organic photodiodes made of a commonly used semiconducting polymers, poly(3-hexylthiophene) (P3HT), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), and copper(II) phthalocyanine (CuPc). We find that P3HT and MEH-PPV contain both shallow and deep level states, but deep traps in CuPc depend on process conditions, consistent with reports in the recent literature. We demonstrate that these deep traps corrupt the interpretation of the classical Mott–Schottky analysis (of RB-CV data), leading to an underestimation of the built-in voltage of a device.</description><subject>solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMFKAzEURYMoWKsL_yAIgl2MJpNkMrNsR6tCoQu12yFNX9qUdlKSFKkr_8E_9EuMVLpy9d7icDn3InRJyS0lOb1bbgQRghB_hDq0YnkmuRDHh5_LU3QWwpIQwQhlHbS4BwM64nqhvNIRvP1Q0boW2xaP_Vy1VuMXWFvt2tlWR-cDnu7w0Pl35Wd4YFXAtdoobaNqNXx_fk3cKqo54JvhIKsnPdxv1WoXbDhHJ0atAlz83S56Gz681k_ZaPz4XPdHmWIijxk3eQGQs2Q3LWVlyoIAyQsJUkApOSRpSJUIgbIwgvNKMF7wqQQoZ5UxjHXR1T7XhWibkMRAL5J9m1o2lBZlTmWCentIexeCB9NsvF0rv2soaX53bA47JvZ6zyodmqXb-lQo_MP9AE4ecTw</recordid><startdate>20140807</startdate><enddate>20140807</enddate><creator>Ray, Biswajit</creator><creator>Baradwaj, Aditya G</creator><creator>Boudouris, Bryan W</creator><creator>Alam, Muhammad A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20140807</creationdate><title>Defect Characterization in Organic Semiconductors by Forward Bias Capacitance–Voltage (FB-CV) Analysis</title><author>Ray, Biswajit ; Baradwaj, Aditya G ; Boudouris, Bryan W ; Alam, Muhammad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-4f26ee23301b879f860e0267e75e874e013e74500e86f544953464b7ee8d9ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Biswajit</creatorcontrib><creatorcontrib>Baradwaj, Aditya G</creatorcontrib><creatorcontrib>Boudouris, Bryan W</creatorcontrib><creatorcontrib>Alam, Muhammad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Biswajit</au><au>Baradwaj, Aditya G</au><au>Boudouris, Bryan W</au><au>Alam, Muhammad A</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Re-Defining Photovoltaic Efficiency Through Molecule Scale Control (RPEMSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect Characterization in Organic Semiconductors by Forward Bias Capacitance–Voltage (FB-CV) Analysis</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-08-07</date><risdate>2014</risdate><volume>118</volume><issue>31</issue><spage>17461</spage><epage>17466</epage><pages>17461-17466</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Transport in organic semiconductors (OSCs) generally is poorer relative to their inorganic counterparts, mainly due to the high defect density that trap the free charge carriers. In this article, we demonstrate a new defect characterization method based on forward bias capacitance–voltage (FB-CV) measurements, which is appropriate for a broad range of low mobility OSCs with relatively large (&gt;1.5 eV) band gaps. The characterization method, developed using numerical modeling and experimental data, relates the capacitance peaks in the FB-CV sweep to the deep level defect states; these states are inaccessible to classical reverse bias (RB) impedance spectroscopy. We validate the proposed technique by interpreting FB-CV data for organic photodiodes made of a commonly used semiconducting polymers, poly(3-hexylthiophene) (P3HT), poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), and copper(II) phthalocyanine (CuPc). We find that P3HT and MEH-PPV contain both shallow and deep level states, but deep traps in CuPc depend on process conditions, consistent with reports in the recent literature. We demonstrate that these deep traps corrupt the interpretation of the classical Mott–Schottky analysis (of RB-CV data), leading to an underestimation of the built-in voltage of a device.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp505500r</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-08, Vol.118 (31), p.17461-17466
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp505500r
source ACS Publications
subjects solar (photovoltaic), electrodes - solar, charge transport, materials and chemistry by design, optics, synthesis (novel materials)
title Defect Characterization in Organic Semiconductors by Forward Bias Capacitance–Voltage (FB-CV) Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20Characterization%20in%20Organic%20Semiconductors%20by%20Forward%20Bias%20Capacitance%E2%80%93Voltage%20(FB-CV)%20Analysis&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ray,%20Biswajit&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2014-08-07&rft.volume=118&rft.issue=31&rft.spage=17461&rft.epage=17466&rft.pages=17461-17466&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp505500r&rft_dat=%3Cacs_osti_%3Ea456758984%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true