Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy

We report a detailed kinetic analysis of ultrafast interfacial and intra-assembly electron transfer following excitation of an oligoproline scaffold functionalized by chemically linked light-harvesting chromophore [Ru(pbpy)2(bpy)]2+ (pbpy = 4,4′-(PO3H2)2-2,2′-bipyridine, bpy = 2,2′-bipyridine) and w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Phys. Chem. C 2014-03, Vol.118 (12), p.6029-6037
Hauptverfasser: Bettis, Stephanie E, Ryan, Derek M, Gish, Melissa K, Alibabaei, Leila, Meyer, Thomas J, Waters, Marcey L, Papanikolas, John M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6037
container_issue 12
container_start_page 6029
container_title J. Phys. Chem. C
container_volume 118
creator Bettis, Stephanie E
Ryan, Derek M
Gish, Melissa K
Alibabaei, Leila
Meyer, Thomas J
Waters, Marcey L
Papanikolas, John M
description We report a detailed kinetic analysis of ultrafast interfacial and intra-assembly electron transfer following excitation of an oligoproline scaffold functionalized by chemically linked light-harvesting chromophore [Ru(pbpy)2(bpy)]2+ (pbpy = 4,4′-(PO3H2)2-2,2′-bipyridine, bpy = 2,2′-bipyridine) and water oxidation catalyst [Ru(Mebimpy)(bpy)OH2]2+ (Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine). The oligoproline scaffold approach is appealing due to its modular nature and helical tertiary structure. They allow for the control of electron transfer distances in chromophore–catalyst assemblies for applications in dye-sensitized photoelectrosynthesis cells (DSPECs). The proline chromophore–catalyst assembly was loaded onto nanocrystalline TiO2 with the helical structure of the oligoproline scaffold maintaining the controlled relative positions of the chromophore and catalyst. Ultrafast transient absorption spectroscopy was used to analyze the kinetics of the first photoactivation step for oxidation of water in the assembly. A global kinetic analysis of the transient absorption spectra reveals that photoinduced electron injection occurs in 18 ps and is followed by intra-assembly oxidative activation of the water oxidation catalyst on the hundreds of picoseconds time scale (k ET = 2.6 × 109 s–1; τ = 380 ps). The first photoactivation step in the water oxidation cycle of the chromophore–catalyst assembly anchored to TiO2 is complete within 380 ps.
doi_str_mv 10.1021/jp410646u
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp410646u</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c732734795</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-c7bfc9a682722220b633f87dcc3ce92beb6f06020182b3f393778c215a6781fa3</originalsourceid><addsrcrecordid>eNptkM9Kw0AQxoMoWKsH32ARPHiI7p9mkx5LUSsUWqjFY5hMd-2WNBt2t2A8-Q4efTufxNWKJ-cyw8zvGz6-JDln9JpRzm427YBROZC7g6THhoKn-SDLDv_mQX6cnHi_oTQTlIle8jFf22DbdecNQk3Ga3CAQTnzCsHYhlhNgExU_XOdqzaYlYqUs9sosk59vr0_QeTJ7MWs9pIxBKg7H8jIe7Wt6o7EJZCF2hq0zWqHwTqy2DkNqMjSm-aZLOvgQEPULFqFwVmPtu1OkyMNtVdnv72fLO9uH8eTdDq7fxiPpimIjIcU80rjEGTBcx6LVlIIXeQrRIFqyCtVSU0l5ZQVvBJaDEWeF8hZBjIvmAbRTy72f60PpvRogsJ1tNpEKyVjkgkhI3S1hzC6807psnVmC64rGS2_oy__oo_s5Z4F9OXG7lwT7f_DfQHHQIb9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy</title><source>ACS Publications</source><creator>Bettis, Stephanie E ; Ryan, Derek M ; Gish, Melissa K ; Alibabaei, Leila ; Meyer, Thomas J ; Waters, Marcey L ; Papanikolas, John M</creator><creatorcontrib>Bettis, Stephanie E ; Ryan, Derek M ; Gish, Melissa K ; Alibabaei, Leila ; Meyer, Thomas J ; Waters, Marcey L ; Papanikolas, John M ; Energy Frontier Research Centers (EFRC) ; Center for Solar Fuels (UNC EFRC)</creatorcontrib><description>We report a detailed kinetic analysis of ultrafast interfacial and intra-assembly electron transfer following excitation of an oligoproline scaffold functionalized by chemically linked light-harvesting chromophore [Ru(pbpy)2(bpy)]2+ (pbpy = 4,4′-(PO3H2)2-2,2′-bipyridine, bpy = 2,2′-bipyridine) and water oxidation catalyst [Ru(Mebimpy)(bpy)OH2]2+ (Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine). The oligoproline scaffold approach is appealing due to its modular nature and helical tertiary structure. They allow for the control of electron transfer distances in chromophore–catalyst assemblies for applications in dye-sensitized photoelectrosynthesis cells (DSPECs). The proline chromophore–catalyst assembly was loaded onto nanocrystalline TiO2 with the helical structure of the oligoproline scaffold maintaining the controlled relative positions of the chromophore and catalyst. Ultrafast transient absorption spectroscopy was used to analyze the kinetics of the first photoactivation step for oxidation of water in the assembly. A global kinetic analysis of the transient absorption spectra reveals that photoinduced electron injection occurs in 18 ps and is followed by intra-assembly oxidative activation of the water oxidation catalyst on the hundreds of picoseconds time scale (k ET = 2.6 × 109 s–1; τ = 380 ps). The first photoactivation step in the water oxidation cycle of the chromophore–catalyst assembly anchored to TiO2 is complete within 380 ps.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp410646u</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>J. Phys. Chem. C, 2014-03, Vol.118 (12), p.6029-6037</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a352t-c7bfc9a682722220b633f87dcc3ce92beb6f06020182b3f393778c215a6781fa3</citedby><cites>FETCH-LOGICAL-a352t-c7bfc9a682722220b633f87dcc3ce92beb6f06020182b3f393778c215a6781fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp410646u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp410646u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1161336$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bettis, Stephanie E</creatorcontrib><creatorcontrib>Ryan, Derek M</creatorcontrib><creatorcontrib>Gish, Melissa K</creatorcontrib><creatorcontrib>Alibabaei, Leila</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Waters, Marcey L</creatorcontrib><creatorcontrib>Papanikolas, John M</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Solar Fuels (UNC EFRC)</creatorcontrib><title>Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy</title><title>J. Phys. Chem. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We report a detailed kinetic analysis of ultrafast interfacial and intra-assembly electron transfer following excitation of an oligoproline scaffold functionalized by chemically linked light-harvesting chromophore [Ru(pbpy)2(bpy)]2+ (pbpy = 4,4′-(PO3H2)2-2,2′-bipyridine, bpy = 2,2′-bipyridine) and water oxidation catalyst [Ru(Mebimpy)(bpy)OH2]2+ (Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine). The oligoproline scaffold approach is appealing due to its modular nature and helical tertiary structure. They allow for the control of electron transfer distances in chromophore–catalyst assemblies for applications in dye-sensitized photoelectrosynthesis cells (DSPECs). The proline chromophore–catalyst assembly was loaded onto nanocrystalline TiO2 with the helical structure of the oligoproline scaffold maintaining the controlled relative positions of the chromophore and catalyst. Ultrafast transient absorption spectroscopy was used to analyze the kinetics of the first photoactivation step for oxidation of water in the assembly. A global kinetic analysis of the transient absorption spectra reveals that photoinduced electron injection occurs in 18 ps and is followed by intra-assembly oxidative activation of the water oxidation catalyst on the hundreds of picoseconds time scale (k ET = 2.6 × 109 s–1; τ = 380 ps). The first photoactivation step in the water oxidation cycle of the chromophore–catalyst assembly anchored to TiO2 is complete within 380 ps.</description><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM9Kw0AQxoMoWKsH32ARPHiI7p9mkx5LUSsUWqjFY5hMd-2WNBt2t2A8-Q4efTufxNWKJ-cyw8zvGz6-JDln9JpRzm427YBROZC7g6THhoKn-SDLDv_mQX6cnHi_oTQTlIle8jFf22DbdecNQk3Ga3CAQTnzCsHYhlhNgExU_XOdqzaYlYqUs9sosk59vr0_QeTJ7MWs9pIxBKg7H8jIe7Wt6o7EJZCF2hq0zWqHwTqy2DkNqMjSm-aZLOvgQEPULFqFwVmPtu1OkyMNtVdnv72fLO9uH8eTdDq7fxiPpimIjIcU80rjEGTBcx6LVlIIXeQrRIFqyCtVSU0l5ZQVvBJaDEWeF8hZBjIvmAbRTy72f60PpvRogsJ1tNpEKyVjkgkhI3S1hzC6807psnVmC64rGS2_oy__oo_s5Z4F9OXG7lwT7f_DfQHHQIb9</recordid><startdate>20140327</startdate><enddate>20140327</enddate><creator>Bettis, Stephanie E</creator><creator>Ryan, Derek M</creator><creator>Gish, Melissa K</creator><creator>Alibabaei, Leila</creator><creator>Meyer, Thomas J</creator><creator>Waters, Marcey L</creator><creator>Papanikolas, John M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20140327</creationdate><title>Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy</title><author>Bettis, Stephanie E ; Ryan, Derek M ; Gish, Melissa K ; Alibabaei, Leila ; Meyer, Thomas J ; Waters, Marcey L ; Papanikolas, John M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-c7bfc9a682722220b633f87dcc3ce92beb6f06020182b3f393778c215a6781fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bettis, Stephanie E</creatorcontrib><creatorcontrib>Ryan, Derek M</creatorcontrib><creatorcontrib>Gish, Melissa K</creatorcontrib><creatorcontrib>Alibabaei, Leila</creatorcontrib><creatorcontrib>Meyer, Thomas J</creatorcontrib><creatorcontrib>Waters, Marcey L</creatorcontrib><creatorcontrib>Papanikolas, John M</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Solar Fuels (UNC EFRC)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Phys. Chem. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bettis, Stephanie E</au><au>Ryan, Derek M</au><au>Gish, Melissa K</au><au>Alibabaei, Leila</au><au>Meyer, Thomas J</au><au>Waters, Marcey L</au><au>Papanikolas, John M</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Solar Fuels (UNC EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy</atitle><jtitle>J. Phys. Chem. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-03-27</date><risdate>2014</risdate><volume>118</volume><issue>12</issue><spage>6029</spage><epage>6037</epage><pages>6029-6037</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We report a detailed kinetic analysis of ultrafast interfacial and intra-assembly electron transfer following excitation of an oligoproline scaffold functionalized by chemically linked light-harvesting chromophore [Ru(pbpy)2(bpy)]2+ (pbpy = 4,4′-(PO3H2)2-2,2′-bipyridine, bpy = 2,2′-bipyridine) and water oxidation catalyst [Ru(Mebimpy)(bpy)OH2]2+ (Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine). The oligoproline scaffold approach is appealing due to its modular nature and helical tertiary structure. They allow for the control of electron transfer distances in chromophore–catalyst assemblies for applications in dye-sensitized photoelectrosynthesis cells (DSPECs). The proline chromophore–catalyst assembly was loaded onto nanocrystalline TiO2 with the helical structure of the oligoproline scaffold maintaining the controlled relative positions of the chromophore and catalyst. Ultrafast transient absorption spectroscopy was used to analyze the kinetics of the first photoactivation step for oxidation of water in the assembly. A global kinetic analysis of the transient absorption spectra reveals that photoinduced electron injection occurs in 18 ps and is followed by intra-assembly oxidative activation of the water oxidation catalyst on the hundreds of picoseconds time scale (k ET = 2.6 × 109 s–1; τ = 380 ps). The first photoactivation step in the water oxidation cycle of the chromophore–catalyst assembly anchored to TiO2 is complete within 380 ps.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp410646u</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof J. Phys. Chem. C, 2014-03, Vol.118 (12), p.6029-6037
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp410646u
source ACS Publications
subjects catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), hydrogen and fuel cells, electrodes - solar, charge transport, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)
title Photophysical Characterization of a Helical Peptide Chromophore–Water Oxidation Catalyst Assembly on a Semiconductor Surface Using Ultrafast Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photophysical%20Characterization%20of%20a%20Helical%20Peptide%20Chromophore%E2%80%93Water%20Oxidation%20Catalyst%20Assembly%20on%20a%20Semiconductor%20Surface%20Using%20Ultrafast%20Spectroscopy&rft.jtitle=J.%20Phys.%20Chem.%20C&rft.au=Bettis,%20Stephanie%20E&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2014-03-27&rft.volume=118&rft.issue=12&rft.spage=6029&rft.epage=6037&rft.pages=6029-6037&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp410646u&rft_dat=%3Cacs_osti_%3Ec732734795%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true