Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode
A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxi...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2013-12, Vol.117 (48), p.25451-25466 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25466 |
---|---|
container_issue | 48 |
container_start_page | 25451 |
container_title | Journal of physical chemistry. C |
container_volume | 117 |
creator | Skachkov, Dmitry Venkateswara Rao, Chitturi Ishikawa, Yasuyuki |
description | A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials ( |
doi_str_mv | 10.1021/jp4048874 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp4048874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b493372455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMoOKcPfoO8CO6hLmn-tY9jW1WYOHA-lzRNMKNtStKCffC72zGdL8KFe-H-zoFzALjF6AGjGM_3LUU0SQQ9AxOckjgSlLHz003FJbgKYY8QIwiTCfhaurqwjS5hZn3ooq23jbJtpQN8cZVWfSU9XA2NrK0K85Vugu0GmPWN6qxrZAV3H9r5Ab51fTlAZ-Cirl1jJVyP4s4792lLeUDhONvuHiM0-_2V-hpcGFkFffOzp-A9W--WT9Hm9fF5udhEMk7SLkoMNoiJQ0ClCy4wK5gqOaGlUDw1BjOmNVE45QVXmsRFyVGhsEK6QNQIQqZgdvRV3oXgtclbb2vphxyj_GCbn3ob2bsj28qgZGW8HAsJJ0GcIEE5T_44qUK-d70f2wj_-H0D-2t6WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</title><source>ACS Publications</source><creator>Skachkov, Dmitry ; Venkateswara Rao, Chitturi ; Ishikawa, Yasuyuki</creator><creatorcontrib>Skachkov, Dmitry ; Venkateswara Rao, Chitturi ; Ishikawa, Yasuyuki</creatorcontrib><description>A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials (<+0.5 V vs RHE). The high electrocatalytic activity of Pt(100) is ascribed to the facile dimerization of bridging nitrogen atoms to form molecular nitrogen, whereas low activity of Pt(111) and Pt(110) is imputed to the nitrogen atoms that are strongly bound at hollow sites and poisoning the surface.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp4048874</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electron states ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Exact sciences and technology ; Methods of electronic structure calculations ; Physics ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of physical chemistry. C, 2013-12, Vol.117 (48), p.25451-25466</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</citedby><cites>FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp4048874$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp4048874$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28074668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skachkov, Dmitry</creatorcontrib><creatorcontrib>Venkateswara Rao, Chitturi</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><title>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials (<+0.5 V vs RHE). The high electrocatalytic activity of Pt(100) is ascribed to the facile dimerization of bridging nitrogen atoms to form molecular nitrogen, whereas low activity of Pt(111) and Pt(110) is imputed to the nitrogen atoms that are strongly bound at hollow sites and poisoning the surface.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron states</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkF9LwzAUxYMoOKcPfoO8CO6hLmn-tY9jW1WYOHA-lzRNMKNtStKCffC72zGdL8KFe-H-zoFzALjF6AGjGM_3LUU0SQQ9AxOckjgSlLHz003FJbgKYY8QIwiTCfhaurqwjS5hZn3ooq23jbJtpQN8cZVWfSU9XA2NrK0K85Vugu0GmPWN6qxrZAV3H9r5Ab51fTlAZ-Cirl1jJVyP4s4792lLeUDhONvuHiM0-_2V-hpcGFkFffOzp-A9W--WT9Hm9fF5udhEMk7SLkoMNoiJQ0ClCy4wK5gqOaGlUDw1BjOmNVE45QVXmsRFyVGhsEK6QNQIQqZgdvRV3oXgtclbb2vphxyj_GCbn3ob2bsj28qgZGW8HAsJJ0GcIEE5T_44qUK-d70f2wj_-H0D-2t6WA</recordid><startdate>20131205</startdate><enddate>20131205</enddate><creator>Skachkov, Dmitry</creator><creator>Venkateswara Rao, Chitturi</creator><creator>Ishikawa, Yasuyuki</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131205</creationdate><title>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</title><author>Skachkov, Dmitry ; Venkateswara Rao, Chitturi ; Ishikawa, Yasuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron states</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skachkov, Dmitry</creatorcontrib><creatorcontrib>Venkateswara Rao, Chitturi</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skachkov, Dmitry</au><au>Venkateswara Rao, Chitturi</au><au>Ishikawa, Yasuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-12-05</date><risdate>2013</risdate><volume>117</volume><issue>48</issue><spage>25451</spage><epage>25466</epage><pages>25451-25466</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials (<+0.5 V vs RHE). The high electrocatalytic activity of Pt(100) is ascribed to the facile dimerization of bridging nitrogen atoms to form molecular nitrogen, whereas low activity of Pt(111) and Pt(110) is imputed to the nitrogen atoms that are strongly bound at hollow sites and poisoning the surface.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp4048874</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2013-12, Vol.117 (48), p.25451-25466 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp4048874 |
source | ACS Publications |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Electron states Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport phenomena in thin films and low-dimensional structures Exact sciences and technology Methods of electronic structure calculations Physics Solid surfaces and solid-solid interfaces Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20First-Principles%20Molecular%20Dynamics/Density%20Functional%20Theory%20Study%20of%20Ammonia%20Electrooxidation%20on%20Pt(100)%20Electrode&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Skachkov,%20Dmitry&rft.date=2013-12-05&rft.volume=117&rft.issue=48&rft.spage=25451&rft.epage=25466&rft.pages=25451-25466&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp4048874&rft_dat=%3Cacs_cross%3Eb493372455%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |