Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode

A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-12, Vol.117 (48), p.25451-25466
Hauptverfasser: Skachkov, Dmitry, Venkateswara Rao, Chitturi, Ishikawa, Yasuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25466
container_issue 48
container_start_page 25451
container_title Journal of physical chemistry. C
container_volume 117
creator Skachkov, Dmitry
Venkateswara Rao, Chitturi
Ishikawa, Yasuyuki
description A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials (
doi_str_mv 10.1021/jp4048874
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp4048874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b493372455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMoOKcPfoO8CO6hLmn-tY9jW1WYOHA-lzRNMKNtStKCffC72zGdL8KFe-H-zoFzALjF6AGjGM_3LUU0SQQ9AxOckjgSlLHz003FJbgKYY8QIwiTCfhaurqwjS5hZn3ooq23jbJtpQN8cZVWfSU9XA2NrK0K85Vugu0GmPWN6qxrZAV3H9r5Ab51fTlAZ-Cirl1jJVyP4s4792lLeUDhONvuHiM0-_2V-hpcGFkFffOzp-A9W--WT9Hm9fF5udhEMk7SLkoMNoiJQ0ClCy4wK5gqOaGlUDw1BjOmNVE45QVXmsRFyVGhsEK6QNQIQqZgdvRV3oXgtclbb2vphxyj_GCbn3ob2bsj28qgZGW8HAsJJ0GcIEE5T_44qUK-d70f2wj_-H0D-2t6WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</title><source>ACS Publications</source><creator>Skachkov, Dmitry ; Venkateswara Rao, Chitturi ; Ishikawa, Yasuyuki</creator><creatorcontrib>Skachkov, Dmitry ; Venkateswara Rao, Chitturi ; Ishikawa, Yasuyuki</creatorcontrib><description>A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials (&lt;+0.5 V vs RHE). The high electrocatalytic activity of Pt(100) is ascribed to the facile dimerization of bridging nitrogen atoms to form molecular nitrogen, whereas low activity of Pt(111) and Pt(110) is imputed to the nitrogen atoms that are strongly bound at hollow sites and poisoning the surface.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp4048874</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Electron states ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport phenomena in thin films and low-dimensional structures ; Exact sciences and technology ; Methods of electronic structure calculations ; Physics ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of physical chemistry. C, 2013-12, Vol.117 (48), p.25451-25466</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</citedby><cites>FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp4048874$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp4048874$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28074668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skachkov, Dmitry</creatorcontrib><creatorcontrib>Venkateswara Rao, Chitturi</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><title>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials (&lt;+0.5 V vs RHE). The high electrocatalytic activity of Pt(100) is ascribed to the facile dimerization of bridging nitrogen atoms to form molecular nitrogen, whereas low activity of Pt(111) and Pt(110) is imputed to the nitrogen atoms that are strongly bound at hollow sites and poisoning the surface.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electron states</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport phenomena in thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkF9LwzAUxYMoOKcPfoO8CO6hLmn-tY9jW1WYOHA-lzRNMKNtStKCffC72zGdL8KFe-H-zoFzALjF6AGjGM_3LUU0SQQ9AxOckjgSlLHz003FJbgKYY8QIwiTCfhaurqwjS5hZn3ooq23jbJtpQN8cZVWfSU9XA2NrK0K85Vugu0GmPWN6qxrZAV3H9r5Ab51fTlAZ-Cirl1jJVyP4s4792lLeUDhONvuHiM0-_2V-hpcGFkFffOzp-A9W--WT9Hm9fF5udhEMk7SLkoMNoiJQ0ClCy4wK5gqOaGlUDw1BjOmNVE45QVXmsRFyVGhsEK6QNQIQqZgdvRV3oXgtclbb2vphxyj_GCbn3ob2bsj28qgZGW8HAsJJ0GcIEE5T_44qUK-d70f2wj_-H0D-2t6WA</recordid><startdate>20131205</startdate><enddate>20131205</enddate><creator>Skachkov, Dmitry</creator><creator>Venkateswara Rao, Chitturi</creator><creator>Ishikawa, Yasuyuki</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131205</creationdate><title>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</title><author>Skachkov, Dmitry ; Venkateswara Rao, Chitturi ; Ishikawa, Yasuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-8f1f0571021ceb6715b5cd634d7c69ff155ee3c196b6ce32bd60bc1c0eb04f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electron states</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport phenomena in thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skachkov, Dmitry</creatorcontrib><creatorcontrib>Venkateswara Rao, Chitturi</creatorcontrib><creatorcontrib>Ishikawa, Yasuyuki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skachkov, Dmitry</au><au>Venkateswara Rao, Chitturi</au><au>Ishikawa, Yasuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-12-05</date><risdate>2013</risdate><volume>117</volume><issue>48</issue><spage>25451</spage><epage>25466</epage><pages>25451-25466</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(100)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(100) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥+0.5 V vs RHE), and the Gerischer and Maurer’s mechanism for lower potentials (&lt;+0.5 V vs RHE). The high electrocatalytic activity of Pt(100) is ascribed to the facile dimerization of bridging nitrogen atoms to form molecular nitrogen, whereas low activity of Pt(111) and Pt(110) is imputed to the nitrogen atoms that are strongly bound at hollow sites and poisoning the surface.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp4048874</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-12, Vol.117 (48), p.25451-25466
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp4048874
source ACS Publications
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Electron states
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport phenomena in thin films and low-dimensional structures
Exact sciences and technology
Methods of electronic structure calculations
Physics
Solid surfaces and solid-solid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Combined First-Principles Molecular Dynamics/Density Functional Theory Study of Ammonia Electrooxidation on Pt(100) Electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20First-Principles%20Molecular%20Dynamics/Density%20Functional%20Theory%20Study%20of%20Ammonia%20Electrooxidation%20on%20Pt(100)%20Electrode&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Skachkov,%20Dmitry&rft.date=2013-12-05&rft.volume=117&rft.issue=48&rft.spage=25451&rft.epage=25466&rft.pages=25451-25466&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp4048874&rft_dat=%3Cacs_cross%3Eb493372455%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true