Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior

The conductive polypyrrole (PPy) polymer nanocomposites (PNCs) reinforced with different magnetite (Fe3O4) nanoparticle loadings have been successfully synthesized by using a facile surface initiated polymerization (SIP) method. The scanning electron microscope (SEM) is used to characterize the surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-05, Vol.117 (19), p.10191-10202
Hauptverfasser: Guo, Jiang, Gu, Hongbo, Wei, Huige, Zhang, Qianyi, Haldolaarachchige, Neel, Li, Ying, Young, David P, Wei, Suying, Guo, Zhanhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10202
container_issue 19
container_start_page 10191
container_title Journal of physical chemistry. C
container_volume 117
creator Guo, Jiang
Gu, Hongbo
Wei, Huige
Zhang, Qianyi
Haldolaarachchige, Neel
Li, Ying
Young, David P
Wei, Suying
Guo, Zhanhu
description The conductive polypyrrole (PPy) polymer nanocomposites (PNCs) reinforced with different magnetite (Fe3O4) nanoparticle loadings have been successfully synthesized by using a facile surface initiated polymerization (SIP) method. The scanning electron microscope (SEM) is used to characterize the surface morphology of the as-received Fe3O4 nanoparticles (NPs), pure PPy and Fe3O4/PPy PNCs. The high-resolution transmission electron microscope (HRTEM) is used to observe the nanoparticle dispersion within the polymer matrix. The chemical structure of the PNCs is characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the Fe3O4/PPy PNCs is assessed by thermogravimetric analysis (TGA). X-ray diffraction (XRD) results reveal that the addition of NPs has a significant effect on the crystallization of PPy. The switching frequency, at which the permittivity switches from negative to positive, is observed in the synthesized pure PPy and Fe3O4/PPy PNCs. The optical band gap of Fe3O4/PPy PNCs is studied by ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The Fe3O4/PPy PNCs exhibit no hysteresis loop, indicating the superparamagnetic behavior. Temperature-dependent resistivity indicates a quasi-3-dimensional variable range hopping (VRH) electrical conduction mechanism for the synthesized samples. The positive magnetoresistance (MR) is observed in the synthesized pure PPy at room temperature and analyzed by the wave function shrinkage model. Meanwhile, the negative MR is obtained in the synthesized magnetic PNCs at room temperature and analyzed by the orbital magnetoconductivity theory (forward interference model).
doi_str_mv 10.1021/jp402236n
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp402236n</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b243645945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-8e564faa9c4da886e14b7fc27c8b9a35cd2930a1302938331deb76304f86e8673</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EEqWw4AbZsGAR8F9shx3_ILWiC9ghRVNnAq7SOLINUnfcgRtyEoKKyobVG2m-eZr3CDlk9IRRzk4XvaScC9VtkRErBc-1LIrtzSz1LtmLcUFpISgTI_I8hZcOk0v49fE58-2qX4XgW8ymmMD6Ze_jsItn2ZXDFm0Kzmaz4HsMyWHMoKuztYMPGF1M0FnMLvAV3p0P-2SngTbiwa-OydPN9ePlXT55uL2_PJ_kwE2ZcoOFkg1AaWUNxihkcq4by7U18xJEYWteCgpM0EGNEKzGuVaCymZgjdJiTI7Xvjb4GAM2VR_cEsKqYrT6qaXa1DKwR2u2h2ihbcLwsYubA64lpUapPw5srBb-LXRDgn_8vgGILHDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior</title><source>ACS Publications</source><creator>Guo, Jiang ; Gu, Hongbo ; Wei, Huige ; Zhang, Qianyi ; Haldolaarachchige, Neel ; Li, Ying ; Young, David P ; Wei, Suying ; Guo, Zhanhu</creator><creatorcontrib>Guo, Jiang ; Gu, Hongbo ; Wei, Huige ; Zhang, Qianyi ; Haldolaarachchige, Neel ; Li, Ying ; Young, David P ; Wei, Suying ; Guo, Zhanhu</creatorcontrib><description>The conductive polypyrrole (PPy) polymer nanocomposites (PNCs) reinforced with different magnetite (Fe3O4) nanoparticle loadings have been successfully synthesized by using a facile surface initiated polymerization (SIP) method. The scanning electron microscope (SEM) is used to characterize the surface morphology of the as-received Fe3O4 nanoparticles (NPs), pure PPy and Fe3O4/PPy PNCs. The high-resolution transmission electron microscope (HRTEM) is used to observe the nanoparticle dispersion within the polymer matrix. The chemical structure of the PNCs is characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the Fe3O4/PPy PNCs is assessed by thermogravimetric analysis (TGA). X-ray diffraction (XRD) results reveal that the addition of NPs has a significant effect on the crystallization of PPy. The switching frequency, at which the permittivity switches from negative to positive, is observed in the synthesized pure PPy and Fe3O4/PPy PNCs. The optical band gap of Fe3O4/PPy PNCs is studied by ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The Fe3O4/PPy PNCs exhibit no hysteresis loop, indicating the superparamagnetic behavior. Temperature-dependent resistivity indicates a quasi-3-dimensional variable range hopping (VRH) electrical conduction mechanism for the synthesized samples. The positive magnetoresistance (MR) is observed in the synthesized pure PPy at room temperature and analyzed by the wave function shrinkage model. Meanwhile, the negative MR is obtained in the synthesized magnetic PNCs at room temperature and analyzed by the orbital magnetoconductivity theory (forward interference model).</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp402236n</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Magnetotransport phenomena, materials for magnetotransport ; Materials science ; Methods of nanofabrication ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics</subject><ispartof>Journal of physical chemistry. C, 2013-05, Vol.117 (19), p.10191-10202</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-8e564faa9c4da886e14b7fc27c8b9a35cd2930a1302938331deb76304f86e8673</citedby><cites>FETCH-LOGICAL-a289t-8e564faa9c4da886e14b7fc27c8b9a35cd2930a1302938331deb76304f86e8673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp402236n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp402236n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27400866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jiang</creatorcontrib><creatorcontrib>Gu, Hongbo</creatorcontrib><creatorcontrib>Wei, Huige</creatorcontrib><creatorcontrib>Zhang, Qianyi</creatorcontrib><creatorcontrib>Haldolaarachchige, Neel</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Young, David P</creatorcontrib><creatorcontrib>Wei, Suying</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><title>Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The conductive polypyrrole (PPy) polymer nanocomposites (PNCs) reinforced with different magnetite (Fe3O4) nanoparticle loadings have been successfully synthesized by using a facile surface initiated polymerization (SIP) method. The scanning electron microscope (SEM) is used to characterize the surface morphology of the as-received Fe3O4 nanoparticles (NPs), pure PPy and Fe3O4/PPy PNCs. The high-resolution transmission electron microscope (HRTEM) is used to observe the nanoparticle dispersion within the polymer matrix. The chemical structure of the PNCs is characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the Fe3O4/PPy PNCs is assessed by thermogravimetric analysis (TGA). X-ray diffraction (XRD) results reveal that the addition of NPs has a significant effect on the crystallization of PPy. The switching frequency, at which the permittivity switches from negative to positive, is observed in the synthesized pure PPy and Fe3O4/PPy PNCs. The optical band gap of Fe3O4/PPy PNCs is studied by ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The Fe3O4/PPy PNCs exhibit no hysteresis loop, indicating the superparamagnetic behavior. Temperature-dependent resistivity indicates a quasi-3-dimensional variable range hopping (VRH) electrical conduction mechanism for the synthesized samples. The positive magnetoresistance (MR) is observed in the synthesized pure PPy at room temperature and analyzed by the wave function shrinkage model. Meanwhile, the negative MR is obtained in the synthesized magnetic PNCs at room temperature and analyzed by the orbital magnetoconductivity theory (forward interference model).</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EEqWw4AbZsGAR8F9shx3_ILWiC9ghRVNnAq7SOLINUnfcgRtyEoKKyobVG2m-eZr3CDlk9IRRzk4XvaScC9VtkRErBc-1LIrtzSz1LtmLcUFpISgTI_I8hZcOk0v49fE58-2qX4XgW8ymmMD6Ze_jsItn2ZXDFm0Kzmaz4HsMyWHMoKuztYMPGF1M0FnMLvAV3p0P-2SngTbiwa-OydPN9ePlXT55uL2_PJ_kwE2ZcoOFkg1AaWUNxihkcq4by7U18xJEYWteCgpM0EGNEKzGuVaCymZgjdJiTI7Xvjb4GAM2VR_cEsKqYrT6qaXa1DKwR2u2h2ihbcLwsYubA64lpUapPw5srBb-LXRDgn_8vgGILHDU</recordid><startdate>20130516</startdate><enddate>20130516</enddate><creator>Guo, Jiang</creator><creator>Gu, Hongbo</creator><creator>Wei, Huige</creator><creator>Zhang, Qianyi</creator><creator>Haldolaarachchige, Neel</creator><creator>Li, Ying</creator><creator>Young, David P</creator><creator>Wei, Suying</creator><creator>Guo, Zhanhu</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130516</creationdate><title>Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior</title><author>Guo, Jiang ; Gu, Hongbo ; Wei, Huige ; Zhang, Qianyi ; Haldolaarachchige, Neel ; Li, Ying ; Young, David P ; Wei, Suying ; Guo, Zhanhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-8e564faa9c4da886e14b7fc27c8b9a35cd2930a1302938331deb76304f86e8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jiang</creatorcontrib><creatorcontrib>Gu, Hongbo</creatorcontrib><creatorcontrib>Wei, Huige</creatorcontrib><creatorcontrib>Zhang, Qianyi</creatorcontrib><creatorcontrib>Haldolaarachchige, Neel</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Young, David P</creatorcontrib><creatorcontrib>Wei, Suying</creatorcontrib><creatorcontrib>Guo, Zhanhu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jiang</au><au>Gu, Hongbo</au><au>Wei, Huige</au><au>Zhang, Qianyi</au><au>Haldolaarachchige, Neel</au><au>Li, Ying</au><au>Young, David P</au><au>Wei, Suying</au><au>Guo, Zhanhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-05-16</date><risdate>2013</risdate><volume>117</volume><issue>19</issue><spage>10191</spage><epage>10202</epage><pages>10191-10202</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The conductive polypyrrole (PPy) polymer nanocomposites (PNCs) reinforced with different magnetite (Fe3O4) nanoparticle loadings have been successfully synthesized by using a facile surface initiated polymerization (SIP) method. The scanning electron microscope (SEM) is used to characterize the surface morphology of the as-received Fe3O4 nanoparticles (NPs), pure PPy and Fe3O4/PPy PNCs. The high-resolution transmission electron microscope (HRTEM) is used to observe the nanoparticle dispersion within the polymer matrix. The chemical structure of the PNCs is characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the Fe3O4/PPy PNCs is assessed by thermogravimetric analysis (TGA). X-ray diffraction (XRD) results reveal that the addition of NPs has a significant effect on the crystallization of PPy. The switching frequency, at which the permittivity switches from negative to positive, is observed in the synthesized pure PPy and Fe3O4/PPy PNCs. The optical band gap of Fe3O4/PPy PNCs is studied by ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). The Fe3O4/PPy PNCs exhibit no hysteresis loop, indicating the superparamagnetic behavior. Temperature-dependent resistivity indicates a quasi-3-dimensional variable range hopping (VRH) electrical conduction mechanism for the synthesized samples. The positive magnetoresistance (MR) is observed in the synthesized pure PPy at room temperature and analyzed by the wave function shrinkage model. Meanwhile, the negative MR is obtained in the synthesized magnetic PNCs at room temperature and analyzed by the orbital magnetoconductivity theory (forward interference model).</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp402236n</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-05, Vol.117 (19), p.10191-10202
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp402236n
source ACS Publications
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Magnetic properties and materials
Magnetic properties of nanostructures
Magnetotransport phenomena, materials for magnetotransport
Materials science
Methods of nanofabrication
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Physics
title Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetite%E2%80%93Polypyrrole%20Metacomposites:%20Dielectric%20Properties%20and%20Magnetoresistance%20Behavior&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Guo,%20Jiang&rft.date=2013-05-16&rft.volume=117&rft.issue=19&rft.spage=10191&rft.epage=10202&rft.pages=10191-10202&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp402236n&rft_dat=%3Cacs_cross%3Eb243645945%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true