Boron Nitride Monolayer: A Strain-Tunable Nanosensor

The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-06, Vol.117 (25), p.13261-13267
Hauptverfasser: Neek-Amal, M, Beheshtian, J, Sadeghi, A, Michel, K. H, Peeters, F. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13267
container_issue 25
container_start_page 13261
container_title Journal of physical chemistry. C
container_volume 117
creator Neek-Amal, M
Beheshtian, J
Sadeghi, A
Michel, K. H
Peeters, F. M
description The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.
doi_str_mv 10.1021/jp402122c
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp402122c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b72498255</sourcerecordid><originalsourceid>FETCH-LOGICAL-a239c-da5e764574f0dc4c551d1165524edf953bff86fba7b5cba8ee5b6424b0a9a48f3</originalsourceid><addsrcrecordid>eNptj71OwzAYRS0EEqUw8AZZGBgC_vvihK1U5UcqZaDM0WfHlhIFO7LboW9PUFFYmO4dzr3SIeSa0TtGObvvBjkG5-aEzFgleK4kwOnUpTonFyl1lIKgTMyIfAwx-GzT7mLb2Owt-NDjwcaHbJF97CK2Pt_uPereZhv0IVmfQrwkZw77ZK9-c04-n1bb5Uu-fn9-XS7WOXJRmbxBsKqQoKSjjZEGgDWMFQBc2sZVILRzZeE0Kg1GY2kt6EJyqSlWKEsn5uT2-GtiSClaVw-x_cJ4qBmtf3TrSXdkb47sgMlg7yJ606ZpwNUoLAX749Ckugv76EeDf_6-AbOcYBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boron Nitride Monolayer: A Strain-Tunable Nanosensor</title><source>American Chemical Society Journals</source><creator>Neek-Amal, M ; Beheshtian, J ; Sadeghi, A ; Michel, K. H ; Peeters, F. M</creator><creatorcontrib>Neek-Amal, M ; Beheshtian, J ; Sadeghi, A ; Michel, K. H ; Peeters, F. M</creatorcontrib><description>The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp402122c</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron states ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Materials science ; Methods of electronic structure calculations ; Physics ; Specific materials</subject><ispartof>Journal of physical chemistry. C, 2013-06, Vol.117 (25), p.13261-13267</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a239c-da5e764574f0dc4c551d1165524edf953bff86fba7b5cba8ee5b6424b0a9a48f3</citedby><cites>FETCH-LOGICAL-a239c-da5e764574f0dc4c551d1165524edf953bff86fba7b5cba8ee5b6424b0a9a48f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp402122c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp402122c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27530431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neek-Amal, M</creatorcontrib><creatorcontrib>Beheshtian, J</creatorcontrib><creatorcontrib>Sadeghi, A</creatorcontrib><creatorcontrib>Michel, K. H</creatorcontrib><creatorcontrib>Peeters, F. M</creatorcontrib><title>Boron Nitride Monolayer: A Strain-Tunable Nanosensor</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron states</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Materials science</subject><subject>Methods of electronic structure calculations</subject><subject>Physics</subject><subject>Specific materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptj71OwzAYRS0EEqUw8AZZGBgC_vvihK1U5UcqZaDM0WfHlhIFO7LboW9PUFFYmO4dzr3SIeSa0TtGObvvBjkG5-aEzFgleK4kwOnUpTonFyl1lIKgTMyIfAwx-GzT7mLb2Owt-NDjwcaHbJF97CK2Pt_uPereZhv0IVmfQrwkZw77ZK9-c04-n1bb5Uu-fn9-XS7WOXJRmbxBsKqQoKSjjZEGgDWMFQBc2sZVILRzZeE0Kg1GY2kt6EJyqSlWKEsn5uT2-GtiSClaVw-x_cJ4qBmtf3TrSXdkb47sgMlg7yJ606ZpwNUoLAX749Ckugv76EeDf_6-AbOcYBA</recordid><startdate>20130627</startdate><enddate>20130627</enddate><creator>Neek-Amal, M</creator><creator>Beheshtian, J</creator><creator>Sadeghi, A</creator><creator>Michel, K. H</creator><creator>Peeters, F. M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130627</creationdate><title>Boron Nitride Monolayer: A Strain-Tunable Nanosensor</title><author>Neek-Amal, M ; Beheshtian, J ; Sadeghi, A ; Michel, K. H ; Peeters, F. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a239c-da5e764574f0dc4c551d1165524edf953bff86fba7b5cba8ee5b6424b0a9a48f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron states</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Materials science</topic><topic>Methods of electronic structure calculations</topic><topic>Physics</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neek-Amal, M</creatorcontrib><creatorcontrib>Beheshtian, J</creatorcontrib><creatorcontrib>Sadeghi, A</creatorcontrib><creatorcontrib>Michel, K. H</creatorcontrib><creatorcontrib>Peeters, F. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neek-Amal, M</au><au>Beheshtian, J</au><au>Sadeghi, A</au><au>Michel, K. H</au><au>Peeters, F. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boron Nitride Monolayer: A Strain-Tunable Nanosensor</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-06-27</date><risdate>2013</risdate><volume>117</volume><issue>25</issue><spage>13261</spage><epage>13267</epage><pages>13261-13267</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The influence of triaxial in-plane strain on the electronic properties of a hexagonal boron-nitride sheet is investigated using density functional theory. Different from graphene, the triaxial strain localizes the molecular orbitals of the boron-nitride flake in its center depending on the direction of the applied strain. The proposed technique for localizing the molecular orbitals that are close to the Fermi level in the center of boron nitride flakes can be used to actualize engineered nanosensors, for instance, to selectively detect gas molecules. We show that the central part of the strained flake adsorbs polar molecules more strongly as compared with an unstrained sheet.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp402122c</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-06, Vol.117 (25), p.13261-13267
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp402122c
source American Chemical Society Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Electron states
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Materials science
Methods of electronic structure calculations
Physics
Specific materials
title Boron Nitride Monolayer: A Strain-Tunable Nanosensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A54%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boron%20Nitride%20Monolayer:%20A%20Strain-Tunable%20Nanosensor&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Neek-Amal,%20M&rft.date=2013-06-27&rft.volume=117&rft.issue=25&rft.spage=13261&rft.epage=13267&rft.pages=13261-13267&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp402122c&rft_dat=%3Cacs_cross%3Eb72498255%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true