DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth
The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Seve...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2013-04, Vol.117 (14), p.7123-7137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7137 |
---|---|
container_issue | 14 |
container_start_page | 7123 |
container_title | Journal of physical chemistry. C |
container_volume | 117 |
creator | Getsoian, Andrew “Bean” Shapovalov, Vladimir Bell, Alexis T |
description | The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site. |
doi_str_mv | 10.1021/jp400440p |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp400440p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b330993294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</originalsourceid><addsrcrecordid>eNptkE1PwkAQhjdGExE9-A_24sFodT9p6w1RlESDQTg3S3dWlpS22V2IXPztlo_gxcNkJu-88yTzInRJyR0ljN7Pa0GIEKQ-Qi2achbFQsrjwyziU3Tm_ZwQyQnlLfTz1B_fTPCgXIEP9ksFW5W4MvjDVTWUgIffVu_FFTj8aP1iGWb4vSrW02YBD7ibB7sC_GkD-Fs8ApVv7YMygFuAtmqrq1LjMAM8qgrY8Pegc3RiVOHhYt_baNJ_Hvdeo7fhy6DXfYsUIyJEMgaZaC2pZoQLnigadzpSEsGnVOcxZYqmDBIujDRpU5x1qKaQJsrQRiC8ja533NxV3jswWe3sQrl1Rkm2CS47BNd4r3beWvlcFcapMrf-cMBiJmmT3p9P5T6bV0tXNh_8w_sFLm15aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</title><source>American Chemical Society Journals</source><creator>Getsoian, Andrew “Bean” ; Shapovalov, Vladimir ; Bell, Alexis T</creator><creatorcontrib>Getsoian, Andrew “Bean” ; Shapovalov, Vladimir ; Bell, Alexis T</creatorcontrib><description>The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp400440p</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Catalysis ; Catalytic reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of physical chemistry. C, 2013-04, Vol.117 (14), p.7123-7137</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</citedby><cites>FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp400440p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp400440p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27251530$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Getsoian, Andrew “Bean”</creatorcontrib><creatorcontrib>Shapovalov, Vladimir</creatorcontrib><creatorcontrib>Bell, Alexis T</creatorcontrib><title>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site.</description><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwkAQhjdGExE9-A_24sFodT9p6w1RlESDQTg3S3dWlpS22V2IXPztlo_gxcNkJu-88yTzInRJyR0ljN7Pa0GIEKQ-Qi2achbFQsrjwyziU3Tm_ZwQyQnlLfTz1B_fTPCgXIEP9ksFW5W4MvjDVTWUgIffVu_FFTj8aP1iGWb4vSrW02YBD7ibB7sC_GkD-Fs8ApVv7YMygFuAtmqrq1LjMAM8qgrY8Pegc3RiVOHhYt_baNJ_Hvdeo7fhy6DXfYsUIyJEMgaZaC2pZoQLnigadzpSEsGnVOcxZYqmDBIujDRpU5x1qKaQJsrQRiC8ja533NxV3jswWe3sQrl1Rkm2CS47BNd4r3beWvlcFcapMrf-cMBiJmmT3p9P5T6bV0tXNh_8w_sFLm15aA</recordid><startdate>20130411</startdate><enddate>20130411</enddate><creator>Getsoian, Andrew “Bean”</creator><creator>Shapovalov, Vladimir</creator><creator>Bell, Alexis T</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130411</creationdate><title>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</title><author>Getsoian, Andrew “Bean” ; Shapovalov, Vladimir ; Bell, Alexis T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Getsoian, Andrew “Bean”</creatorcontrib><creatorcontrib>Shapovalov, Vladimir</creatorcontrib><creatorcontrib>Bell, Alexis T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Getsoian, Andrew “Bean”</au><au>Shapovalov, Vladimir</au><au>Bell, Alexis T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-04-11</date><risdate>2013</risdate><volume>117</volume><issue>14</issue><spage>7123</spage><epage>7137</epage><pages>7123-7137</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp400440p</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2013-04, Vol.117 (14), p.7123-7137 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp400440p |
source | American Chemical Society Journals |
subjects | Catalysis Catalytic reactions Chemistry Exact sciences and technology General and physical chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT+U%20Investigation%20of%20Propene%20Oxidation%20over%20Bismuth%20Molybdate:%20Active%20Sites,%20Reaction%20Intermediates,%20and%20the%20Role%20of%20Bismuth&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Getsoian,%20Andrew%20%E2%80%9CBean%E2%80%9D&rft.date=2013-04-11&rft.volume=117&rft.issue=14&rft.spage=7123&rft.epage=7137&rft.pages=7123-7137&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp400440p&rft_dat=%3Cacs_cross%3Eb330993294%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |