DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth

The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Seve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-04, Vol.117 (14), p.7123-7137
Hauptverfasser: Getsoian, Andrew “Bean”, Shapovalov, Vladimir, Bell, Alexis T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7137
container_issue 14
container_start_page 7123
container_title Journal of physical chemistry. C
container_volume 117
creator Getsoian, Andrew “Bean”
Shapovalov, Vladimir
Bell, Alexis T
description The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site.
doi_str_mv 10.1021/jp400440p
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp400440p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b330993294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</originalsourceid><addsrcrecordid>eNptkE1PwkAQhjdGExE9-A_24sFodT9p6w1RlESDQTg3S3dWlpS22V2IXPztlo_gxcNkJu-88yTzInRJyR0ljN7Pa0GIEKQ-Qi2achbFQsrjwyziU3Tm_ZwQyQnlLfTz1B_fTPCgXIEP9ksFW5W4MvjDVTWUgIffVu_FFTj8aP1iGWb4vSrW02YBD7ibB7sC_GkD-Fs8ApVv7YMygFuAtmqrq1LjMAM8qgrY8Pegc3RiVOHhYt_baNJ_Hvdeo7fhy6DXfYsUIyJEMgaZaC2pZoQLnigadzpSEsGnVOcxZYqmDBIujDRpU5x1qKaQJsrQRiC8ja533NxV3jswWe3sQrl1Rkm2CS47BNd4r3beWvlcFcapMrf-cMBiJmmT3p9P5T6bV0tXNh_8w_sFLm15aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</title><source>American Chemical Society Journals</source><creator>Getsoian, Andrew “Bean” ; Shapovalov, Vladimir ; Bell, Alexis T</creator><creatorcontrib>Getsoian, Andrew “Bean” ; Shapovalov, Vladimir ; Bell, Alexis T</creatorcontrib><description>The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp400440p</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Catalysis ; Catalytic reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of physical chemistry. C, 2013-04, Vol.117 (14), p.7123-7137</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</citedby><cites>FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp400440p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp400440p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27251530$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Getsoian, Andrew “Bean”</creatorcontrib><creatorcontrib>Shapovalov, Vladimir</creatorcontrib><creatorcontrib>Bell, Alexis T</creatorcontrib><title>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site.</description><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwkAQhjdGExE9-A_24sFodT9p6w1RlESDQTg3S3dWlpS22V2IXPztlo_gxcNkJu-88yTzInRJyR0ljN7Pa0GIEKQ-Qi2achbFQsrjwyziU3Tm_ZwQyQnlLfTz1B_fTPCgXIEP9ksFW5W4MvjDVTWUgIffVu_FFTj8aP1iGWb4vSrW02YBD7ibB7sC_GkD-Fs8ApVv7YMygFuAtmqrq1LjMAM8qgrY8Pegc3RiVOHhYt_baNJ_Hvdeo7fhy6DXfYsUIyJEMgaZaC2pZoQLnigadzpSEsGnVOcxZYqmDBIujDRpU5x1qKaQJsrQRiC8ja533NxV3jswWe3sQrl1Rkm2CS47BNd4r3beWvlcFcapMrf-cMBiJmmT3p9P5T6bV0tXNh_8w_sFLm15aA</recordid><startdate>20130411</startdate><enddate>20130411</enddate><creator>Getsoian, Andrew “Bean”</creator><creator>Shapovalov, Vladimir</creator><creator>Bell, Alexis T</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130411</creationdate><title>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</title><author>Getsoian, Andrew “Bean” ; Shapovalov, Vladimir ; Bell, Alexis T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-57e58dd51d203438a176655043b1dc712a192e834f5f9f5f3261d1e98af1f9f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Getsoian, Andrew “Bean”</creatorcontrib><creatorcontrib>Shapovalov, Vladimir</creatorcontrib><creatorcontrib>Bell, Alexis T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Getsoian, Andrew “Bean”</au><au>Shapovalov, Vladimir</au><au>Bell, Alexis T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-04-11</date><risdate>2013</risdate><volume>117</volume><issue>14</issue><spage>7123</spage><epage>7137</epage><pages>7123-7137</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The mechanism by which propene is selectively oxidized to acrolein over bismuth molybdate has been investigated using the DFT+U variant of density functional theory. In agreement with experiment, the kinetically relevant step is found to be the initial abstraction of hydrogen by lattice oxygen. Several candidate lattice oxygen sites have been examined, the most active of which is found to be a bismuth-perturbed molybdenyl MoO oxygen. Hydrogen abstraction generates an allyl radical intermediate, which can diffuse freely across the catalyst surface and ultimately binds to a second molybdenyl oxygen to form an allyl alkoxy intermediate. A second hydrogen is abstracted from this intermediate to produce acrolein. Calculations suggest that only molybdenum centers are reduced during the reaction. However, presence of bismuth in the catalyst is essential for providing the requisite structural and electronic environment at the active site.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp400440p</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-04, Vol.117 (14), p.7123-7137
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp400440p
source American Chemical Society Journals
subjects Catalysis
Catalytic reactions
Chemistry
Exact sciences and technology
General and physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT+U%20Investigation%20of%20Propene%20Oxidation%20over%20Bismuth%20Molybdate:%20Active%20Sites,%20Reaction%20Intermediates,%20and%20the%20Role%20of%20Bismuth&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Getsoian,%20Andrew%20%E2%80%9CBean%E2%80%9D&rft.date=2013-04-11&rft.volume=117&rft.issue=14&rft.spage=7123&rft.epage=7137&rft.pages=7123-7137&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp400440p&rft_dat=%3Cacs_cross%3Eb330993294%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true