High-Generation Dendrimers with Excimer-like Photoluminescence for the Detection of Explosives

We report three generations of dendrimers incorporating either a fluorene or spirobifluorene core with carbazole dendrons and fluorene surface groups that are effective sensing materials for the detection of nitrated explosives by fluorescence quenching. The photophysical properties of the dendrimer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-03, Vol.117 (10), p.5328-5337
Hauptverfasser: Shaw, Paul E, Chen, Simon S. Y, Wang, Xin, Burn, Paul L, Meredith, Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report three generations of dendrimers incorporating either a fluorene or spirobifluorene core with carbazole dendrons and fluorene surface groups that are effective sensing materials for the detection of nitrated explosives by fluorescence quenching. The photophysical properties of the dendrimers were investigated with a combination of steady-state absorption and photoluminescence and time-resolved photoluminescence. We show that the first-generation dendrimers behave as single chromophores while the higher-generation dendrimers contain multiple chromophores that interact to give excimer-like emissive states. Stern–Volmer measurements with nitrated analytes show that the quenching efficiency decreases with generation for the planar fluorene-cored dendrimers and increases with generation for the more three-dimensional spirobifluorene-cored dendrimers. These contrasting trends are shown to be caused primarily by changes in the quenching efficiency of static interactions with the nitrated analytes, which is a consequence of the choice of core. Our results highlight the potential for exploiting such excimer-like states for chemical sensing, particularly in the case of nitrated explosives.
ISSN:1932-7447
1932-7455
DOI:10.1021/jp4002884