Thermochemical Behavior of Nickel-Coated Nanoaluminum Particles

Thermochemical behavior of nickel-coated aluminum particles in the size range of 4–18 nm is studied using molecular dynamics simulations. The analysis is carried out in isothermal–isobaric and isochoric-isoenergetic ensembles using an embedded atom method. Emphasis is placed on analyzing the melting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-04, Vol.117 (15), p.7858-7869
Hauptverfasser: Sundaram, Dilip S, Puri, Puneesh, Yang, Vigor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7869
container_issue 15
container_start_page 7858
container_title Journal of physical chemistry. C
container_volume 117
creator Sundaram, Dilip S
Puri, Puneesh
Yang, Vigor
description Thermochemical behavior of nickel-coated aluminum particles in the size range of 4–18 nm is studied using molecular dynamics simulations. The analysis is carried out in isothermal–isobaric and isochoric-isoenergetic ensembles using an embedded atom method. Emphasis is placed on analyzing the melting points of the core and shell, diffusion of atoms, and intermetallic reactions. The aluminum core melts at a temperature greater than the melting point of a nascent aluminum particle due to the cage-like mechanical constraint imposed by the nickel shell. The melting point of the aluminum core increases from 775 to 1000 K when the core diameter increases from 3 to 12 nm. The melting point of the core is not significantly affected by variations in the shell thickness in the range of 1–3 nm, although the melting point of the shell increases with increasing thickness from a value as low as 1100 K at 1 nm to 1580 K at 3 nm. Melting is followed by diffusion of atoms and energy release due to intermetallic reactions, which result in ignition of the particle in vacuum. For a core diameter of 3 nm, the ignition temperature increases from 800 to 1600 K when the shell thickness increases from 0.5 to 3.0 nm. The diffusion coefficient of aluminum atoms in the nickel shell exhibits an exponential dependence on temperature, with activation energy of 34.7 kJ/mol. The adiabatic reaction temperature of the particle increases from 1650 to 2338 K when the core diameter increases from 3 to 8 nm. The calculated values agree reasonably well with those obtained via thermodynamic energy balance analysis.
doi_str_mv 10.1021/jp312436j
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp312436j</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b024685527</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-dee991ce190f0a00a05447ec1e1dfb6aa06eced34b10c8f26611192b8754fb943</originalsourceid><addsrcrecordid>eNptj01LxDAQhoMouK4e_Ae9ePBQzST9ykl0WT9gWT2s5zJNJ2xq2yxJV_DfW1mpF2Fg5vC8L_Mwdgn8BriA22YnQSQya47YDJQUcZ6k6fF0J_kpOwuh4TyVHOSM3W225Dunt9RZjW30QFv8tM5HzkRrqz-ojRcOB6qjNfYO231n-30XvaEfrG4pnLMTg22gi989Z--Py83iOV69Pr0s7lcxikINcU2kFGgCxQ1HPk46_kIaCGpTZYg8I021TCrgujAiywBAiarI08RUKpFzdn3o1d6F4MmUO2879F8l8PLHvJzMR_bqwO4wjE7GY69tmAIil5CnhfzjUIeycXvfjwb_9H0DNtdkdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermochemical Behavior of Nickel-Coated Nanoaluminum Particles</title><source>American Chemical Society Journals</source><creator>Sundaram, Dilip S ; Puri, Puneesh ; Yang, Vigor</creator><creatorcontrib>Sundaram, Dilip S ; Puri, Puneesh ; Yang, Vigor</creatorcontrib><description>Thermochemical behavior of nickel-coated aluminum particles in the size range of 4–18 nm is studied using molecular dynamics simulations. The analysis is carried out in isothermal–isobaric and isochoric-isoenergetic ensembles using an embedded atom method. Emphasis is placed on analyzing the melting points of the core and shell, diffusion of atoms, and intermetallic reactions. The aluminum core melts at a temperature greater than the melting point of a nascent aluminum particle due to the cage-like mechanical constraint imposed by the nickel shell. The melting point of the aluminum core increases from 775 to 1000 K when the core diameter increases from 3 to 12 nm. The melting point of the core is not significantly affected by variations in the shell thickness in the range of 1–3 nm, although the melting point of the shell increases with increasing thickness from a value as low as 1100 K at 1 nm to 1580 K at 3 nm. Melting is followed by diffusion of atoms and energy release due to intermetallic reactions, which result in ignition of the particle in vacuum. For a core diameter of 3 nm, the ignition temperature increases from 800 to 1600 K when the shell thickness increases from 0.5 to 3.0 nm. The diffusion coefficient of aluminum atoms in the nickel shell exhibits an exponential dependence on temperature, with activation energy of 34.7 kJ/mol. The adiabatic reaction temperature of the particle increases from 1650 to 2338 K when the core diameter increases from 3 to 8 nm. The calculated values agree reasonably well with those obtained via thermodynamic energy balance analysis.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp312436j</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Diffusion in solids ; Exact sciences and technology ; Physics ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Journal of physical chemistry. C, 2013-04, Vol.117 (15), p.7858-7869</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-dee991ce190f0a00a05447ec1e1dfb6aa06eced34b10c8f26611192b8754fb943</citedby><cites>FETCH-LOGICAL-a289t-dee991ce190f0a00a05447ec1e1dfb6aa06eced34b10c8f26611192b8754fb943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp312436j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp312436j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27317583$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sundaram, Dilip S</creatorcontrib><creatorcontrib>Puri, Puneesh</creatorcontrib><creatorcontrib>Yang, Vigor</creatorcontrib><title>Thermochemical Behavior of Nickel-Coated Nanoaluminum Particles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Thermochemical behavior of nickel-coated aluminum particles in the size range of 4–18 nm is studied using molecular dynamics simulations. The analysis is carried out in isothermal–isobaric and isochoric-isoenergetic ensembles using an embedded atom method. Emphasis is placed on analyzing the melting points of the core and shell, diffusion of atoms, and intermetallic reactions. The aluminum core melts at a temperature greater than the melting point of a nascent aluminum particle due to the cage-like mechanical constraint imposed by the nickel shell. The melting point of the aluminum core increases from 775 to 1000 K when the core diameter increases from 3 to 12 nm. The melting point of the core is not significantly affected by variations in the shell thickness in the range of 1–3 nm, although the melting point of the shell increases with increasing thickness from a value as low as 1100 K at 1 nm to 1580 K at 3 nm. Melting is followed by diffusion of atoms and energy release due to intermetallic reactions, which result in ignition of the particle in vacuum. For a core diameter of 3 nm, the ignition temperature increases from 800 to 1600 K when the shell thickness increases from 0.5 to 3.0 nm. The diffusion coefficient of aluminum atoms in the nickel shell exhibits an exponential dependence on temperature, with activation energy of 34.7 kJ/mol. The adiabatic reaction temperature of the particle increases from 1650 to 2338 K when the core diameter increases from 3 to 8 nm. The calculated values agree reasonably well with those obtained via thermodynamic energy balance analysis.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptj01LxDAQhoMouK4e_Ae9ePBQzST9ykl0WT9gWT2s5zJNJ2xq2yxJV_DfW1mpF2Fg5vC8L_Mwdgn8BriA22YnQSQya47YDJQUcZ6k6fF0J_kpOwuh4TyVHOSM3W225Dunt9RZjW30QFv8tM5HzkRrqz-ojRcOB6qjNfYO231n-30XvaEfrG4pnLMTg22gi989Z--Py83iOV69Pr0s7lcxikINcU2kFGgCxQ1HPk46_kIaCGpTZYg8I021TCrgujAiywBAiarI08RUKpFzdn3o1d6F4MmUO2879F8l8PLHvJzMR_bqwO4wjE7GY69tmAIil5CnhfzjUIeycXvfjwb_9H0DNtdkdQ</recordid><startdate>20130418</startdate><enddate>20130418</enddate><creator>Sundaram, Dilip S</creator><creator>Puri, Puneesh</creator><creator>Yang, Vigor</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130418</creationdate><title>Thermochemical Behavior of Nickel-Coated Nanoaluminum Particles</title><author>Sundaram, Dilip S ; Puri, Puneesh ; Yang, Vigor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-dee991ce190f0a00a05447ec1e1dfb6aa06eced34b10c8f26611192b8754fb943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sundaram, Dilip S</creatorcontrib><creatorcontrib>Puri, Puneesh</creatorcontrib><creatorcontrib>Yang, Vigor</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sundaram, Dilip S</au><au>Puri, Puneesh</au><au>Yang, Vigor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermochemical Behavior of Nickel-Coated Nanoaluminum Particles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-04-18</date><risdate>2013</risdate><volume>117</volume><issue>15</issue><spage>7858</spage><epage>7869</epage><pages>7858-7869</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Thermochemical behavior of nickel-coated aluminum particles in the size range of 4–18 nm is studied using molecular dynamics simulations. The analysis is carried out in isothermal–isobaric and isochoric-isoenergetic ensembles using an embedded atom method. Emphasis is placed on analyzing the melting points of the core and shell, diffusion of atoms, and intermetallic reactions. The aluminum core melts at a temperature greater than the melting point of a nascent aluminum particle due to the cage-like mechanical constraint imposed by the nickel shell. The melting point of the aluminum core increases from 775 to 1000 K when the core diameter increases from 3 to 12 nm. The melting point of the core is not significantly affected by variations in the shell thickness in the range of 1–3 nm, although the melting point of the shell increases with increasing thickness from a value as low as 1100 K at 1 nm to 1580 K at 3 nm. Melting is followed by diffusion of atoms and energy release due to intermetallic reactions, which result in ignition of the particle in vacuum. For a core diameter of 3 nm, the ignition temperature increases from 800 to 1600 K when the shell thickness increases from 0.5 to 3.0 nm. The diffusion coefficient of aluminum atoms in the nickel shell exhibits an exponential dependence on temperature, with activation energy of 34.7 kJ/mol. The adiabatic reaction temperature of the particle increases from 1650 to 2338 K when the core diameter increases from 3 to 8 nm. The calculated values agree reasonably well with those obtained via thermodynamic energy balance analysis.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp312436j</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-04, Vol.117 (15), p.7858-7869
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp312436j
source American Chemical Society Journals
subjects Condensed matter: structure, mechanical and thermal properties
Diffusion in solids
Exact sciences and technology
Physics
Transport properties of condensed matter (nonelectronic)
title Thermochemical Behavior of Nickel-Coated Nanoaluminum Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermochemical%20Behavior%20of%20Nickel-Coated%20Nanoaluminum%20Particles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sundaram,%20Dilip%20S&rft.date=2013-04-18&rft.volume=117&rft.issue=15&rft.spage=7858&rft.epage=7869&rft.pages=7858-7869&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp312436j&rft_dat=%3Cacs_cross%3Eb024685527%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true