Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy

The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-01, Vol.117 (3), p.1257-1267
Hauptverfasser: Nie, Mengyun, Chalasani, Dinesh, Abraham, Daniel P, Chen, Yanjing, Bose, Arijit, Lucht, Brett L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1267
container_issue 3
container_start_page 1257
container_title Journal of physical chemistry. C
container_volume 117
creator Nie, Mengyun
Chalasani, Dinesh
Abraham, Daniel P
Chen, Yanjing
Bose, Arijit
Lucht, Brett L
description The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.
doi_str_mv 10.1021/jp3118055
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp3118055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c366589106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</originalsourceid><addsrcrecordid>eNptkE9Lw0AQxRdRsFYPfoO9ePAQ3f9JjlpqLVQEq-cw2d2QLWmy7KZCvr1pK_XiaYbH7z1mHkK3lDxQwujjxnNKMyLlGZrQnLMkFVKen3aRXqKrGDeESE4onyBYub52uy1edi1-hr63YcCLAL52vcXrrnEGzxur-9A1w6gs25HwNUSLP-y3hcYaXA74zenQRd35AUNr8NofHAfhGl1U0ER78zun6Otl_jl7TVbvi-XsaZUAl7JPtJGWAS2tYVnKMyMMUSVLK15qqUieU0GEVkYTZVQOimSUlURAqoAwbquMT9H9MXd_SQy2KnxwWwhDQUmx76Y4dTOyd0fWQ9TQVAFa7eLJwFQmBefpHwc6FptuF9rxg3_yfgBixHAm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</title><source>ACS Publications</source><creator>Nie, Mengyun ; Chalasani, Dinesh ; Abraham, Daniel P ; Chen, Yanjing ; Bose, Arijit ; Lucht, Brett L</creator><creatorcontrib>Nie, Mengyun ; Chalasani, Dinesh ; Abraham, Daniel P ; Chen, Yanjing ; Bose, Arijit ; Lucht, Brett L</creatorcontrib><description>The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp3118055</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Applied sciences ; Chemistry ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Study of interfaces ; Transport and storage of energy</subject><ispartof>Journal of physical chemistry. C, 2013-01, Vol.117 (3), p.1257-1267</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</citedby><cites>FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp3118055$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp3118055$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26854337$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Mengyun</creatorcontrib><creatorcontrib>Chalasani, Dinesh</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Chen, Yanjing</creatorcontrib><creatorcontrib>Bose, Arijit</creatorcontrib><creatorcontrib>Lucht, Brett L</creatorcontrib><title>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Study of interfaces</subject><subject>Transport and storage of energy</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE9Lw0AQxRdRsFYPfoO9ePAQ3f9JjlpqLVQEq-cw2d2QLWmy7KZCvr1pK_XiaYbH7z1mHkK3lDxQwujjxnNKMyLlGZrQnLMkFVKen3aRXqKrGDeESE4onyBYub52uy1edi1-hr63YcCLAL52vcXrrnEGzxur-9A1w6gs25HwNUSLP-y3hcYaXA74zenQRd35AUNr8NofHAfhGl1U0ER78zun6Otl_jl7TVbvi-XsaZUAl7JPtJGWAS2tYVnKMyMMUSVLK15qqUieU0GEVkYTZVQOimSUlURAqoAwbquMT9H9MXd_SQy2KnxwWwhDQUmx76Y4dTOyd0fWQ9TQVAFa7eLJwFQmBefpHwc6FptuF9rxg3_yfgBixHAm</recordid><startdate>20130124</startdate><enddate>20130124</enddate><creator>Nie, Mengyun</creator><creator>Chalasani, Dinesh</creator><creator>Abraham, Daniel P</creator><creator>Chen, Yanjing</creator><creator>Bose, Arijit</creator><creator>Lucht, Brett L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130124</creationdate><title>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</title><author>Nie, Mengyun ; Chalasani, Dinesh ; Abraham, Daniel P ; Chen, Yanjing ; Bose, Arijit ; Lucht, Brett L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Study of interfaces</topic><topic>Transport and storage of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Mengyun</creatorcontrib><creatorcontrib>Chalasani, Dinesh</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Chen, Yanjing</creatorcontrib><creatorcontrib>Bose, Arijit</creatorcontrib><creatorcontrib>Lucht, Brett L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Mengyun</au><au>Chalasani, Dinesh</au><au>Abraham, Daniel P</au><au>Chen, Yanjing</au><au>Bose, Arijit</au><au>Lucht, Brett L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-01-24</date><risdate>2013</risdate><volume>117</volume><issue>3</issue><spage>1257</spage><epage>1267</epage><pages>1257-1267</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp3118055</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-01, Vol.117 (3), p.1257-1267
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp3118055
source ACS Publications
subjects Applied sciences
Chemistry
Electrochemistry
Energy
Energy. Thermal use of fuels
Exact sciences and technology
General and physical chemistry
Study of interfaces
Transport and storage of energy
title Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Ion%20Battery%20Graphite%20Solid%20Electrolyte%20Interphase%20Revealed%20by%20Microscopy%20and%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Nie,%20Mengyun&rft.date=2013-01-24&rft.volume=117&rft.issue=3&rft.spage=1257&rft.epage=1267&rft.pages=1257-1267&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp3118055&rft_dat=%3Cacs_cross%3Ec366589106%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true