Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersiv...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2013-01, Vol.117 (3), p.1257-1267 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1267 |
---|---|
container_issue | 3 |
container_start_page | 1257 |
container_title | Journal of physical chemistry. C |
container_volume | 117 |
creator | Nie, Mengyun Chalasani, Dinesh Abraham, Daniel P Chen, Yanjing Bose, Arijit Lucht, Brett L |
description | The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF. |
doi_str_mv | 10.1021/jp3118055 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp3118055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c366589106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</originalsourceid><addsrcrecordid>eNptkE9Lw0AQxRdRsFYPfoO9ePAQ3f9JjlpqLVQEq-cw2d2QLWmy7KZCvr1pK_XiaYbH7z1mHkK3lDxQwujjxnNKMyLlGZrQnLMkFVKen3aRXqKrGDeESE4onyBYub52uy1edi1-hr63YcCLAL52vcXrrnEGzxur-9A1w6gs25HwNUSLP-y3hcYaXA74zenQRd35AUNr8NofHAfhGl1U0ER78zun6Otl_jl7TVbvi-XsaZUAl7JPtJGWAS2tYVnKMyMMUSVLK15qqUieU0GEVkYTZVQOimSUlURAqoAwbquMT9H9MXd_SQy2KnxwWwhDQUmx76Y4dTOyd0fWQ9TQVAFa7eLJwFQmBefpHwc6FptuF9rxg3_yfgBixHAm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</title><source>ACS Publications</source><creator>Nie, Mengyun ; Chalasani, Dinesh ; Abraham, Daniel P ; Chen, Yanjing ; Bose, Arijit ; Lucht, Brett L</creator><creatorcontrib>Nie, Mengyun ; Chalasani, Dinesh ; Abraham, Daniel P ; Chen, Yanjing ; Bose, Arijit ; Lucht, Brett L</creatorcontrib><description>The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp3118055</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Applied sciences ; Chemistry ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; General and physical chemistry ; Study of interfaces ; Transport and storage of energy</subject><ispartof>Journal of physical chemistry. C, 2013-01, Vol.117 (3), p.1257-1267</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</citedby><cites>FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp3118055$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp3118055$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26854337$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Mengyun</creatorcontrib><creatorcontrib>Chalasani, Dinesh</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Chen, Yanjing</creatorcontrib><creatorcontrib>Bose, Arijit</creatorcontrib><creatorcontrib>Lucht, Brett L</creatorcontrib><title>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Study of interfaces</subject><subject>Transport and storage of energy</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkE9Lw0AQxRdRsFYPfoO9ePAQ3f9JjlpqLVQEq-cw2d2QLWmy7KZCvr1pK_XiaYbH7z1mHkK3lDxQwujjxnNKMyLlGZrQnLMkFVKen3aRXqKrGDeESE4onyBYub52uy1edi1-hr63YcCLAL52vcXrrnEGzxur-9A1w6gs25HwNUSLP-y3hcYaXA74zenQRd35AUNr8NofHAfhGl1U0ER78zun6Otl_jl7TVbvi-XsaZUAl7JPtJGWAS2tYVnKMyMMUSVLK15qqUieU0GEVkYTZVQOimSUlURAqoAwbquMT9H9MXd_SQy2KnxwWwhDQUmx76Y4dTOyd0fWQ9TQVAFa7eLJwFQmBefpHwc6FptuF9rxg3_yfgBixHAm</recordid><startdate>20130124</startdate><enddate>20130124</enddate><creator>Nie, Mengyun</creator><creator>Chalasani, Dinesh</creator><creator>Abraham, Daniel P</creator><creator>Chen, Yanjing</creator><creator>Bose, Arijit</creator><creator>Lucht, Brett L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130124</creationdate><title>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</title><author>Nie, Mengyun ; Chalasani, Dinesh ; Abraham, Daniel P ; Chen, Yanjing ; Bose, Arijit ; Lucht, Brett L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-cd5e2a1bed28738d4d06b27f3bc560991404c6dc06d69a60812b04a76a023ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Study of interfaces</topic><topic>Transport and storage of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Mengyun</creatorcontrib><creatorcontrib>Chalasani, Dinesh</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Chen, Yanjing</creatorcontrib><creatorcontrib>Bose, Arijit</creatorcontrib><creatorcontrib>Lucht, Brett L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Mengyun</au><au>Chalasani, Dinesh</au><au>Abraham, Daniel P</au><au>Chen, Yanjing</au><au>Bose, Arijit</au><au>Lucht, Brett L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-01-24</date><risdate>2013</risdate><volume>117</volume><issue>3</issue><spage>1257</spage><epage>1267</epage><pages>1257-1267</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The surface reactions of electrolytes with the graphitic anode of lithium ion batteries have been investigated. The investigation utilizes two novel techniques, which are enabled by the use of binder-free graphite anodes. The first method, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, allows straightforward analysis of the graphite solid electrolyte interphase (SEI). The second method utilizes multi-nuclear magnetic resonance (NMR) spectroscopy of D2O extracts from the cycled anodes. The TEM and NMR data are complemented by XPS and FTIR data, which are routinely used for SEI studies. Cells were cycled with LiPF6 and ethylene carbonate (EC), ethyl methyl carbonate (EMC), and EC/EMC blends. This unique combination of techniques establishes that for EC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick after the first full lithiation cycle, and predominantly contains lithium ethylene dicarbonate (LEDC) and LiF. In cells containing EMC/LiPF6 electrolytes, the graphite SEI is nonuniform, ∼10–20 nm thick, and contains lithium ethyl carbonate (LEC), lithium methyl carbonate (LMC), and LiF. In cells containing EC/EMC/LiPF6 electrolytes, the graphite SEI is ∼50 nm thick, and predominantly contains LEDC, LMC, and LiF.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp3118055</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2013-01, Vol.117 (3), p.1257-1267 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp3118055 |
source | ACS Publications |
subjects | Applied sciences Chemistry Electrochemistry Energy Energy. Thermal use of fuels Exact sciences and technology General and physical chemistry Study of interfaces Transport and storage of energy |
title | Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Ion%20Battery%20Graphite%20Solid%20Electrolyte%20Interphase%20Revealed%20by%20Microscopy%20and%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Nie,%20Mengyun&rft.date=2013-01-24&rft.volume=117&rft.issue=3&rft.spage=1257&rft.epage=1267&rft.pages=1257-1267&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp3118055&rft_dat=%3Cacs_cross%3Ec366589106%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |