Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System

We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. There...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2013-05, Vol.117 (19), p.9663-9672
Hauptverfasser: Xu, Jingxiang, Sakanoi, Ryota, Higuchi, Yuji, Ozawa, Nobuki, Sato, Kazuhisa, Hashida, Toshiyuki, Kubo, Momoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9672
container_issue 19
container_start_page 9663
container_title Journal of physical chemistry. C
container_volume 117
creator Xu, Jingxiang
Sakanoi, Ryota
Higuchi, Yuji
Ozawa, Nobuki
Sato, Kazuhisa
Hashida, Toshiyuki
Kubo, Momoji
description We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs.
doi_str_mv 10.1021/jp310920d
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp310920d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c177840469</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqUw8A-8MDCEnu04TkdUKCC1BakwwBJdHadyldiRnQ7996QqKgzohvt67pXeI-SawR0DzkabVjAYcyhPyICNBU9UKuXpsU7VObmIcQMgBTAxIOu5r43e1hjow85hY3WkS9v0g856R31FF5Yu0PkWQ2d1bfZr15lg3Zq-Ba9NjNS6nhp9Lr_ofFt3NvnL0-Uudqa5JGcV1tFc_eQh-Zg-vk-ek9nr08vkfpagkLJLeIZplq1QsdRwg33HJOYK8t5VyZWGvAS5QpCVwRVKIbgqxxVozUFkfYghuT3o6uBjDKYq2mAbDLuCQbH_UHH8UM_eHNgWo8a6Cui0jccDrlKAnMEvhzoWG78Nrnfwj943K4pyFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</title><source>ACS Publications</source><creator>Xu, Jingxiang ; Sakanoi, Ryota ; Higuchi, Yuji ; Ozawa, Nobuki ; Sato, Kazuhisa ; Hashida, Toshiyuki ; Kubo, Momoji</creator><creatorcontrib>Xu, Jingxiang ; Sakanoi, Ryota ; Higuchi, Yuji ; Ozawa, Nobuki ; Sato, Kazuhisa ; Hashida, Toshiyuki ; Kubo, Momoji</creatorcontrib><description>We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp310920d</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Porous materials; granular materials ; Specific materials</subject><ispartof>Journal of physical chemistry. C, 2013-05, Vol.117 (19), p.9663-9672</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</citedby><cites>FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp310920d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp310920d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27400810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Sakanoi, Ryota</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ozawa, Nobuki</creatorcontrib><creatorcontrib>Sato, Kazuhisa</creatorcontrib><creatorcontrib>Hashida, Toshiyuki</creatorcontrib><creatorcontrib>Kubo, Momoji</creatorcontrib><title>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Porous materials; granular materials</subject><subject>Specific materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EEqUw8A-8MDCEnu04TkdUKCC1BakwwBJdHadyldiRnQ7996QqKgzohvt67pXeI-SawR0DzkabVjAYcyhPyICNBU9UKuXpsU7VObmIcQMgBTAxIOu5r43e1hjow85hY3WkS9v0g856R31FF5Yu0PkWQ2d1bfZr15lg3Zq-Ba9NjNS6nhp9Lr_ofFt3NvnL0-Uudqa5JGcV1tFc_eQh-Zg-vk-ek9nr08vkfpagkLJLeIZplq1QsdRwg33HJOYK8t5VyZWGvAS5QpCVwRVKIbgqxxVozUFkfYghuT3o6uBjDKYq2mAbDLuCQbH_UHH8UM_eHNgWo8a6Cui0jccDrlKAnMEvhzoWG78Nrnfwj943K4pyFA</recordid><startdate>20130516</startdate><enddate>20130516</enddate><creator>Xu, Jingxiang</creator><creator>Sakanoi, Ryota</creator><creator>Higuchi, Yuji</creator><creator>Ozawa, Nobuki</creator><creator>Sato, Kazuhisa</creator><creator>Hashida, Toshiyuki</creator><creator>Kubo, Momoji</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130516</creationdate><title>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</title><author>Xu, Jingxiang ; Sakanoi, Ryota ; Higuchi, Yuji ; Ozawa, Nobuki ; Sato, Kazuhisa ; Hashida, Toshiyuki ; Kubo, Momoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Porous materials; granular materials</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Sakanoi, Ryota</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ozawa, Nobuki</creatorcontrib><creatorcontrib>Sato, Kazuhisa</creatorcontrib><creatorcontrib>Hashida, Toshiyuki</creatorcontrib><creatorcontrib>Kubo, Momoji</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jingxiang</au><au>Sakanoi, Ryota</au><au>Higuchi, Yuji</au><au>Ozawa, Nobuki</au><au>Sato, Kazuhisa</au><au>Hashida, Toshiyuki</au><au>Kubo, Momoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-05-16</date><risdate>2013</risdate><volume>117</volume><issue>19</issue><spage>9663</spage><epage>9672</epage><pages>9663-9672</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp310920d</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2013-05, Vol.117 (19), p.9663-9672
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp310920d
source ACS Publications
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Porous materials
granular materials
Specific materials
title Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Ni%20Nanoparticles%20Sintering%20Process%20in%20Ni/YSZ%20Multi-Nanoparticle%20System&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Xu,%20Jingxiang&rft.date=2013-05-16&rft.volume=117&rft.issue=19&rft.spage=9663&rft.epage=9672&rft.pages=9663-9672&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp310920d&rft_dat=%3Cacs_cross%3Ec177840469%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true