Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System
We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. There...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2013-05, Vol.117 (19), p.9663-9672 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9672 |
---|---|
container_issue | 19 |
container_start_page | 9663 |
container_title | Journal of physical chemistry. C |
container_volume | 117 |
creator | Xu, Jingxiang Sakanoi, Ryota Higuchi, Yuji Ozawa, Nobuki Sato, Kazuhisa Hashida, Toshiyuki Kubo, Momoji |
description | We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs. |
doi_str_mv | 10.1021/jp310920d |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp310920d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c177840469</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqUw8A-8MDCEnu04TkdUKCC1BakwwBJdHadyldiRnQ7996QqKgzohvt67pXeI-SawR0DzkabVjAYcyhPyICNBU9UKuXpsU7VObmIcQMgBTAxIOu5r43e1hjow85hY3WkS9v0g856R31FF5Yu0PkWQ2d1bfZr15lg3Zq-Ba9NjNS6nhp9Lr_ofFt3NvnL0-Uudqa5JGcV1tFc_eQh-Zg-vk-ek9nr08vkfpagkLJLeIZplq1QsdRwg33HJOYK8t5VyZWGvAS5QpCVwRVKIbgqxxVozUFkfYghuT3o6uBjDKYq2mAbDLuCQbH_UHH8UM_eHNgWo8a6Cui0jccDrlKAnMEvhzoWG78Nrnfwj943K4pyFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</title><source>ACS Publications</source><creator>Xu, Jingxiang ; Sakanoi, Ryota ; Higuchi, Yuji ; Ozawa, Nobuki ; Sato, Kazuhisa ; Hashida, Toshiyuki ; Kubo, Momoji</creator><creatorcontrib>Xu, Jingxiang ; Sakanoi, Ryota ; Higuchi, Yuji ; Ozawa, Nobuki ; Sato, Kazuhisa ; Hashida, Toshiyuki ; Kubo, Momoji</creatorcontrib><description>We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp310920d</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Porous materials; granular materials ; Specific materials</subject><ispartof>Journal of physical chemistry. C, 2013-05, Vol.117 (19), p.9663-9672</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</citedby><cites>FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp310920d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp310920d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27400810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Sakanoi, Ryota</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ozawa, Nobuki</creatorcontrib><creatorcontrib>Sato, Kazuhisa</creatorcontrib><creatorcontrib>Hashida, Toshiyuki</creatorcontrib><creatorcontrib>Kubo, Momoji</creatorcontrib><title>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Porous materials; granular materials</subject><subject>Specific materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EEqUw8A-8MDCEnu04TkdUKCC1BakwwBJdHadyldiRnQ7996QqKgzohvt67pXeI-SawR0DzkabVjAYcyhPyICNBU9UKuXpsU7VObmIcQMgBTAxIOu5r43e1hjow85hY3WkS9v0g856R31FF5Yu0PkWQ2d1bfZr15lg3Zq-Ba9NjNS6nhp9Lr_ofFt3NvnL0-Uudqa5JGcV1tFc_eQh-Zg-vk-ek9nr08vkfpagkLJLeIZplq1QsdRwg33HJOYK8t5VyZWGvAS5QpCVwRVKIbgqxxVozUFkfYghuT3o6uBjDKYq2mAbDLuCQbH_UHH8UM_eHNgWo8a6Cui0jccDrlKAnMEvhzoWG78Nrnfwj943K4pyFA</recordid><startdate>20130516</startdate><enddate>20130516</enddate><creator>Xu, Jingxiang</creator><creator>Sakanoi, Ryota</creator><creator>Higuchi, Yuji</creator><creator>Ozawa, Nobuki</creator><creator>Sato, Kazuhisa</creator><creator>Hashida, Toshiyuki</creator><creator>Kubo, Momoji</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130516</creationdate><title>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</title><author>Xu, Jingxiang ; Sakanoi, Ryota ; Higuchi, Yuji ; Ozawa, Nobuki ; Sato, Kazuhisa ; Hashida, Toshiyuki ; Kubo, Momoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-26a466ba714e2ea6a415a8708310d27c08d05ba05feaba53327d9f0cc20363633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Porous materials; granular materials</topic><topic>Specific materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jingxiang</creatorcontrib><creatorcontrib>Sakanoi, Ryota</creatorcontrib><creatorcontrib>Higuchi, Yuji</creatorcontrib><creatorcontrib>Ozawa, Nobuki</creatorcontrib><creatorcontrib>Sato, Kazuhisa</creatorcontrib><creatorcontrib>Hashida, Toshiyuki</creatorcontrib><creatorcontrib>Kubo, Momoji</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jingxiang</au><au>Sakanoi, Ryota</au><au>Higuchi, Yuji</au><au>Ozawa, Nobuki</au><au>Sato, Kazuhisa</au><au>Hashida, Toshiyuki</au><au>Kubo, Momoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-05-16</date><risdate>2013</risdate><volume>117</volume><issue>19</issue><spage>9663</spage><epage>9672</epage><pages>9663-9672</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We have developed a molecular dynamics (MD) simulation method to investigate the sintering of nickel nanoparticles in the nickel and yttria-stabilized zirconia (Ni/YSZ) anode of a solid oxide fuel cell (SOFC). The conventional sintering model consists of only two or three nickel nanoparticles. Therefore, it does not reflect the properties of the porous structure of the Ni/YSZ anode or reproduce realistic sintering. Our Ni/YSZ multi-nanoparticle MD simulation method uses a multi-nanoparticle model based on the porosity and Ni/YSZ nanoparticle ratio of a realistic anode. The Ni and YSZ nanoparticles are packed randomly in the simulation cell, and compressed to achieve the correct porosity. Furthermore, because the reliable potential parameters for MD simulation between nickel and YSZ have not been reported, we determine reliable interatomic potential parameters between nickel and YSZ by using the nonlinear least-squares method to fit the Morse potential function to interaction energies obtained by density functional theory. The sintering simulation using our Ni/YSZ multi-nanoparticle model and our potential parameters reveal that the YSZ nanoparticle framework suppresses the sintering of nickel nanoparticles by disrupting the growth of the neck between two nickel nanoparticles. The previously reported model of two nickel nanoparticles did not produce these results. Our multi-nanoparticle MD simulation method is effective for investigating the realistic sintering process in the porous structure of the Ni/YSZ anode and for designing durable anode structures for SOFCs.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp310920d</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2013-05, Vol.117 (19), p.9663-9672 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp310920d |
source | ACS Publications |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Other topics in nanoscale materials and structures Physics Porous materials granular materials Specific materials |
title | Molecular Dynamics Simulation of Ni Nanoparticles Sintering Process in Ni/YSZ Multi-Nanoparticle System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Ni%20Nanoparticles%20Sintering%20Process%20in%20Ni/YSZ%20Multi-Nanoparticle%20System&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Xu,%20Jingxiang&rft.date=2013-05-16&rft.volume=117&rft.issue=19&rft.spage=9663&rft.epage=9672&rft.pages=9663-9672&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp310920d&rft_dat=%3Cacs_cross%3Ec177840469%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |