A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks

Zeolitic imidazolate framework (ZIF) materials have received considerable attention recently due to their potential as materials for gas separation applications. In this work, we study, both experimentally and with molecular modeling, methane adsorption in a series of five ZIFs (ZIF-25, -71, -93, -9...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Phys. Chem. C 2013-05, Vol.117 (20), p.10326-10335
Hauptverfasser: Houndonougbo, Yao, Signer, Christopher, He, Ning, Morris, William, Furukawa, Hiroyasu, Ray, Keith G, Olmsted, David L, Asta, Mark, Laird, Brian B, Yaghi, Omar M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10335
container_issue 20
container_start_page 10326
container_title J. Phys. Chem. C
container_volume 117
creator Houndonougbo, Yao
Signer, Christopher
He, Ning
Morris, William
Furukawa, Hiroyasu
Ray, Keith G
Olmsted, David L
Asta, Mark
Laird, Brian B
Yaghi, Omar M
description Zeolitic imidazolate framework (ZIF) materials have received considerable attention recently due to their potential as materials for gas separation applications. In this work, we study, both experimentally and with molecular modeling, methane adsorption in a series of five ZIFs (ZIF-25, -71, -93, -96, and -97) that share a common structural topology (RHO), but differ in imidazolate functionalization. Such a series allows for the direct assessment of the role that functionalization plays in determining methane adsorption. Experimental measurements of methane adsorption up to 1 bar at various temperatures are well reproduced by molecular simulations, which are further used to examine adsorption up to higher pressures of 80 bar, and to analyze the preferred binding sites within the structure. We find that CH4 uptake in these ZIFs is roughly proportional to the Brunauer–Emmett–Teller (BET) surface area, in contrast to our earlier work on the adsorption of CO2 for this series [J. Am. Chem. Soc. 2010, 132, 11006], which showed a significant enhancement of CO2 adsorption, due to electrostatic effects, in asymmetrically functionalized ZIFs (ZIF-93, -96, -97) over those with symmetric functionalization (ZIF-25, -71). Furthermore, the ideal adsorbed solution theory (IAST) is used to predict selectivity of CO2 over CH4 in these RHO ZIFs by fitting CH4 adsorption measurements in this work and the CO2 experimental isotherms from our earlier work [J. Am. Chem. Soc. 2010, 132, 11006].
doi_str_mv 10.1021/jp3096192
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp3096192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c525968500</sourcerecordid><originalsourceid>FETCH-LOGICAL-a316t-9f624ec3bd7121c90773f1c6e7793eab23c4173cc1f6f471139510eb899bcc593</originalsourceid><addsrcrecordid>eNptkLFuFDEQhlcIJEKg4A0sJAqKA4-9uz6Xp1NCTgqiABqa1ezsLPGxZ69sXyBUeQcK3o8nwcmho6GamV_fjDRfVT0H-RqkgjfbWUvbglUPqhOwWi1M3TQPj31tHldPUtpK2WgJ-qT6tRLrsOud50GcfZ85uh37jNPv258ln_cZswseJ7Hx15yy-3I_izCKd5yv0LNYDSnE-T5FP4gPPDFld-3yjXAlKkF0nO42NgXk7Gg_YRSfOUyuDGKzcwP-CBNmFucRd_wtxK_pafVoxCnxs7_1tPp0fvZxfbG4fP92s15dLlBDmxd2bFXNpPvBgAKy0hg9ArVsjNWMvdJUg9FEMLZjbQC0bUByv7S2J2qsPq1eHO6G8lyXyGWmKwrelyc6gKJJLQv06gBRDClFHru5eMJ404Hs7rR3R-2FfXlgZ0yE0xjRk0vHBWVqCUou_3FIqduGfSyS03_u_QGwRZFK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks</title><source>American Chemical Society Journals</source><creator>Houndonougbo, Yao ; Signer, Christopher ; He, Ning ; Morris, William ; Furukawa, Hiroyasu ; Ray, Keith G ; Olmsted, David L ; Asta, Mark ; Laird, Brian B ; Yaghi, Omar M</creator><creatorcontrib>Houndonougbo, Yao ; Signer, Christopher ; He, Ning ; Morris, William ; Furukawa, Hiroyasu ; Ray, Keith G ; Olmsted, David L ; Asta, Mark ; Laird, Brian B ; Yaghi, Omar M ; Molecularly Engineered Energy Materials (MEEM) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>Zeolitic imidazolate framework (ZIF) materials have received considerable attention recently due to their potential as materials for gas separation applications. In this work, we study, both experimentally and with molecular modeling, methane adsorption in a series of five ZIFs (ZIF-25, -71, -93, -96, and -97) that share a common structural topology (RHO), but differ in imidazolate functionalization. Such a series allows for the direct assessment of the role that functionalization plays in determining methane adsorption. Experimental measurements of methane adsorption up to 1 bar at various temperatures are well reproduced by molecular simulations, which are further used to examine adsorption up to higher pressures of 80 bar, and to analyze the preferred binding sites within the structure. We find that CH4 uptake in these ZIFs is roughly proportional to the Brunauer–Emmett–Teller (BET) surface area, in contrast to our earlier work on the adsorption of CO2 for this series [J. Am. Chem. Soc. 2010, 132, 11006], which showed a significant enhancement of CO2 adsorption, due to electrostatic effects, in asymmetrically functionalized ZIFs (ZIF-93, -96, -97) over those with symmetric functionalization (ZIF-25, -71). Furthermore, the ideal adsorbed solution theory (IAST) is used to predict selectivity of CO2 over CH4 in these RHO ZIFs by fitting CH4 adsorption measurements in this work and the CO2 experimental isotherms from our earlier work [J. Am. Chem. Soc. 2010, 132, 11006].</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp3096192</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Physics ; solar (photovoltaic), energy storage (including batteries and capacitors), charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>J. Phys. Chem. C, 2013-05, Vol.117 (20), p.10326-10335</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a316t-9f624ec3bd7121c90773f1c6e7793eab23c4173cc1f6f471139510eb899bcc593</citedby><cites>FETCH-LOGICAL-a316t-9f624ec3bd7121c90773f1c6e7793eab23c4173cc1f6f471139510eb899bcc593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp3096192$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp3096192$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27401208$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1105328$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Houndonougbo, Yao</creatorcontrib><creatorcontrib>Signer, Christopher</creatorcontrib><creatorcontrib>He, Ning</creatorcontrib><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Furukawa, Hiroyasu</creatorcontrib><creatorcontrib>Ray, Keith G</creatorcontrib><creatorcontrib>Olmsted, David L</creatorcontrib><creatorcontrib>Asta, Mark</creatorcontrib><creatorcontrib>Laird, Brian B</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><creatorcontrib>Molecularly Engineered Energy Materials (MEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks</title><title>J. Phys. Chem. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Zeolitic imidazolate framework (ZIF) materials have received considerable attention recently due to their potential as materials for gas separation applications. In this work, we study, both experimentally and with molecular modeling, methane adsorption in a series of five ZIFs (ZIF-25, -71, -93, -96, and -97) that share a common structural topology (RHO), but differ in imidazolate functionalization. Such a series allows for the direct assessment of the role that functionalization plays in determining methane adsorption. Experimental measurements of methane adsorption up to 1 bar at various temperatures are well reproduced by molecular simulations, which are further used to examine adsorption up to higher pressures of 80 bar, and to analyze the preferred binding sites within the structure. We find that CH4 uptake in these ZIFs is roughly proportional to the Brunauer–Emmett–Teller (BET) surface area, in contrast to our earlier work on the adsorption of CO2 for this series [J. Am. Chem. Soc. 2010, 132, 11006], which showed a significant enhancement of CO2 adsorption, due to electrostatic effects, in asymmetrically functionalized ZIFs (ZIF-93, -96, -97) over those with symmetric functionalization (ZIF-25, -71). Furthermore, the ideal adsorbed solution theory (IAST) is used to predict selectivity of CO2 over CH4 in these RHO ZIFs by fitting CH4 adsorption measurements in this work and the CO2 experimental isotherms from our earlier work [J. Am. Chem. Soc. 2010, 132, 11006].</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>solar (photovoltaic), energy storage (including batteries and capacitors), charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkLFuFDEQhlcIJEKg4A0sJAqKA4-9uz6Xp1NCTgqiABqa1ezsLPGxZ69sXyBUeQcK3o8nwcmho6GamV_fjDRfVT0H-RqkgjfbWUvbglUPqhOwWi1M3TQPj31tHldPUtpK2WgJ-qT6tRLrsOud50GcfZ85uh37jNPv258ln_cZswseJ7Hx15yy-3I_izCKd5yv0LNYDSnE-T5FP4gPPDFld-3yjXAlKkF0nO42NgXk7Gg_YRSfOUyuDGKzcwP-CBNmFucRd_wtxK_pafVoxCnxs7_1tPp0fvZxfbG4fP92s15dLlBDmxd2bFXNpPvBgAKy0hg9ArVsjNWMvdJUg9FEMLZjbQC0bUByv7S2J2qsPq1eHO6G8lyXyGWmKwrelyc6gKJJLQv06gBRDClFHru5eMJ404Hs7rR3R-2FfXlgZ0yE0xjRk0vHBWVqCUou_3FIqduGfSyS03_u_QGwRZFK</recordid><startdate>20130523</startdate><enddate>20130523</enddate><creator>Houndonougbo, Yao</creator><creator>Signer, Christopher</creator><creator>He, Ning</creator><creator>Morris, William</creator><creator>Furukawa, Hiroyasu</creator><creator>Ray, Keith G</creator><creator>Olmsted, David L</creator><creator>Asta, Mark</creator><creator>Laird, Brian B</creator><creator>Yaghi, Omar M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130523</creationdate><title>A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks</title><author>Houndonougbo, Yao ; Signer, Christopher ; He, Ning ; Morris, William ; Furukawa, Hiroyasu ; Ray, Keith G ; Olmsted, David L ; Asta, Mark ; Laird, Brian B ; Yaghi, Omar M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a316t-9f624ec3bd7121c90773f1c6e7793eab23c4173cc1f6f471139510eb899bcc593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>solar (photovoltaic), energy storage (including batteries and capacitors), charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houndonougbo, Yao</creatorcontrib><creatorcontrib>Signer, Christopher</creatorcontrib><creatorcontrib>He, Ning</creatorcontrib><creatorcontrib>Morris, William</creatorcontrib><creatorcontrib>Furukawa, Hiroyasu</creatorcontrib><creatorcontrib>Ray, Keith G</creatorcontrib><creatorcontrib>Olmsted, David L</creatorcontrib><creatorcontrib>Asta, Mark</creatorcontrib><creatorcontrib>Laird, Brian B</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><creatorcontrib>Molecularly Engineered Energy Materials (MEEM)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Phys. Chem. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houndonougbo, Yao</au><au>Signer, Christopher</au><au>He, Ning</au><au>Morris, William</au><au>Furukawa, Hiroyasu</au><au>Ray, Keith G</au><au>Olmsted, David L</au><au>Asta, Mark</au><au>Laird, Brian B</au><au>Yaghi, Omar M</au><aucorp>Molecularly Engineered Energy Materials (MEEM)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks</atitle><jtitle>J. Phys. Chem. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2013-05-23</date><risdate>2013</risdate><volume>117</volume><issue>20</issue><spage>10326</spage><epage>10335</epage><pages>10326-10335</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Zeolitic imidazolate framework (ZIF) materials have received considerable attention recently due to their potential as materials for gas separation applications. In this work, we study, both experimentally and with molecular modeling, methane adsorption in a series of five ZIFs (ZIF-25, -71, -93, -96, and -97) that share a common structural topology (RHO), but differ in imidazolate functionalization. Such a series allows for the direct assessment of the role that functionalization plays in determining methane adsorption. Experimental measurements of methane adsorption up to 1 bar at various temperatures are well reproduced by molecular simulations, which are further used to examine adsorption up to higher pressures of 80 bar, and to analyze the preferred binding sites within the structure. We find that CH4 uptake in these ZIFs is roughly proportional to the Brunauer–Emmett–Teller (BET) surface area, in contrast to our earlier work on the adsorption of CO2 for this series [J. Am. Chem. Soc. 2010, 132, 11006], which showed a significant enhancement of CO2 adsorption, due to electrostatic effects, in asymmetrically functionalized ZIFs (ZIF-93, -96, -97) over those with symmetric functionalization (ZIF-25, -71). Furthermore, the ideal adsorbed solution theory (IAST) is used to predict selectivity of CO2 over CH4 in these RHO ZIFs by fitting CH4 adsorption measurements in this work and the CO2 experimental isotherms from our earlier work [J. Am. Chem. Soc. 2010, 132, 11006].</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp3096192</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof J. Phys. Chem. C, 2013-05, Vol.117 (20), p.10326-10335
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp3096192
source American Chemical Society Journals
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Physics
solar (photovoltaic), energy storage (including batteries and capacitors), charge transport, membrane, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Solid surfaces and solid-solid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Combined%20Experimental%E2%80%93Computational%20Investigation%20of%20Methane%20Adsorption%20and%20Selectivity%20in%20a%20Series%20of%20Isoreticular%20Zeolitic%20Imidazolate%20Frameworks&rft.jtitle=J.%20Phys.%20Chem.%20C&rft.au=Houndonougbo,%20Yao&rft.aucorp=Molecularly%20Engineered%20Energy%20Materials%20(MEEM)&rft.date=2013-05-23&rft.volume=117&rft.issue=20&rft.spage=10326&rft.epage=10335&rft.pages=10326-10335&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp3096192&rft_dat=%3Cacs_osti_%3Ec525968500%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true