Coordination and Solvation of the Au+ Cation: Infrared Photodissociation Spectroscopy of Mass-Selected Au(H2O) n + (n = 1–8) Complexes
Gold cation–water complexes with attached argon atoms are produced via a laser vaporization supersonic cluster source. The [Au(H2O) n Ar x ]+ (n = 1–8; x = 1 or 2) complexes are each mass selected and studied by infrared photodissociation spectroscopy in the OH stretching frequency region to explore...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-11, Vol.116 (44), p.10793-10801 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10801 |
---|---|
container_issue | 44 |
container_start_page | 10793 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 116 |
creator | Li, Yuzhen Wang, Guanjun Wang, Caixia Zhou, Mingfei |
description | Gold cation–water complexes with attached argon atoms are produced via a laser vaporization supersonic cluster source. The [Au(H2O) n Ar x ]+ (n = 1–8; x = 1 or 2) complexes are each mass selected and studied by infrared photodissociation spectroscopy in the OH stretching frequency region to explore the coordination and solvation structures of the Au+ cation. Density functional calculations have been performed, and the calculated vibrational spectra are compared to the experimental spectra to identify the gas-phase structures of the Au(H2O) n + complexes. Confirming previous theoretical predications, the first coordination shell of the Au+ cation contains two water molecules forming a linear O–Au+–O arrangement; subsequent water molecules bind to the two H2O ligands of the Au(H2O)2 + core ion via hydrogen bond forming of the second hydration shell, which is complete at n = 6. For the complexes with n ≤ 7, the experimental spectrum can in general be assigned to the predicted global minimum structure. However, the spectrum suggests that two or more conformers coexist for the n = 8 complex, indicating that the identification of a single global minimum becomes less important upon increasing the number of solvating water molecules. |
doi_str_mv | 10.1021/jp3094963 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp3094963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c046718432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-90d9fcb1c33a32cf8a98f5a2119e2ac8f88f1369ac9b5444efd7388d98538f4e3</originalsourceid><addsrcrecordid>eNptkM1Kw0AUhQdRbK0ufAGZjdBSovOTqTOCixLUFpQK1XWYzg9NSTNhJhG7c-neN_RJTI125eree_ju4XAAOMXoAiOCL1clRSIWI7oHupgRFDGC2X6zIy4iNqKiA45CWCGEMCXxIegQijinhHXBR-Kc11khq8wVUBYazl3-2l7Owmpp4LgewuRHuYbTwnrpjYZPS1c5nYXgVNbS89KoyrugXLnZvj7KEKK5yRu14cd1f0JmA1jAIewX8Abir_dPPoCJW5e5eTPhGBxYmQdz8jt74OXu9jmZRA-z-2kyfogkjXkVCaSFVQusKJWUKMul4JZJgrEwRCpuObeYjoRUYsHiODZWX1HOteCMchsb2gOD1lc1WYM3Ni19tpZ-k2KUbttMd2027FnLlvVibfSO_KuvAc5bQKqQrlztiyb6P0bflCd7bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coordination and Solvation of the Au+ Cation: Infrared Photodissociation Spectroscopy of Mass-Selected Au(H2O) n + (n = 1–8) Complexes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Li, Yuzhen ; Wang, Guanjun ; Wang, Caixia ; Zhou, Mingfei</creator><creatorcontrib>Li, Yuzhen ; Wang, Guanjun ; Wang, Caixia ; Zhou, Mingfei</creatorcontrib><description>Gold cation–water complexes with attached argon atoms are produced via a laser vaporization supersonic cluster source. The [Au(H2O) n Ar x ]+ (n = 1–8; x = 1 or 2) complexes are each mass selected and studied by infrared photodissociation spectroscopy in the OH stretching frequency region to explore the coordination and solvation structures of the Au+ cation. Density functional calculations have been performed, and the calculated vibrational spectra are compared to the experimental spectra to identify the gas-phase structures of the Au(H2O) n + complexes. Confirming previous theoretical predications, the first coordination shell of the Au+ cation contains two water molecules forming a linear O–Au+–O arrangement; subsequent water molecules bind to the two H2O ligands of the Au(H2O)2 + core ion via hydrogen bond forming of the second hydration shell, which is complete at n = 6. For the complexes with n ≤ 7, the experimental spectrum can in general be assigned to the predicted global minimum structure. However, the spectrum suggests that two or more conformers coexist for the n = 8 complex, indicating that the identification of a single global minimum becomes less important upon increasing the number of solvating water molecules.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp3094963</identifier><identifier>PMID: 23088325</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cations - chemistry ; Gold - chemistry ; Photochemical Processes ; Solubility ; Spectrophotometry, Infrared ; Water - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-11, Vol.116 (44), p.10793-10801</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-90d9fcb1c33a32cf8a98f5a2119e2ac8f88f1369ac9b5444efd7388d98538f4e3</citedby><cites>FETCH-LOGICAL-a348t-90d9fcb1c33a32cf8a98f5a2119e2ac8f88f1369ac9b5444efd7388d98538f4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp3094963$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp3094963$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23088325$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yuzhen</creatorcontrib><creatorcontrib>Wang, Guanjun</creatorcontrib><creatorcontrib>Wang, Caixia</creatorcontrib><creatorcontrib>Zhou, Mingfei</creatorcontrib><title>Coordination and Solvation of the Au+ Cation: Infrared Photodissociation Spectroscopy of Mass-Selected Au(H2O) n + (n = 1–8) Complexes</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Gold cation–water complexes with attached argon atoms are produced via a laser vaporization supersonic cluster source. The [Au(H2O) n Ar x ]+ (n = 1–8; x = 1 or 2) complexes are each mass selected and studied by infrared photodissociation spectroscopy in the OH stretching frequency region to explore the coordination and solvation structures of the Au+ cation. Density functional calculations have been performed, and the calculated vibrational spectra are compared to the experimental spectra to identify the gas-phase structures of the Au(H2O) n + complexes. Confirming previous theoretical predications, the first coordination shell of the Au+ cation contains two water molecules forming a linear O–Au+–O arrangement; subsequent water molecules bind to the two H2O ligands of the Au(H2O)2 + core ion via hydrogen bond forming of the second hydration shell, which is complete at n = 6. For the complexes with n ≤ 7, the experimental spectrum can in general be assigned to the predicted global minimum structure. However, the spectrum suggests that two or more conformers coexist for the n = 8 complex, indicating that the identification of a single global minimum becomes less important upon increasing the number of solvating water molecules.</description><subject>Cations - chemistry</subject><subject>Gold - chemistry</subject><subject>Photochemical Processes</subject><subject>Solubility</subject><subject>Spectrophotometry, Infrared</subject><subject>Water - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1Kw0AUhQdRbK0ufAGZjdBSovOTqTOCixLUFpQK1XWYzg9NSTNhJhG7c-neN_RJTI125eree_ju4XAAOMXoAiOCL1clRSIWI7oHupgRFDGC2X6zIy4iNqKiA45CWCGEMCXxIegQijinhHXBR-Kc11khq8wVUBYazl3-2l7Owmpp4LgewuRHuYbTwnrpjYZPS1c5nYXgVNbS89KoyrugXLnZvj7KEKK5yRu14cd1f0JmA1jAIewX8Abir_dPPoCJW5e5eTPhGBxYmQdz8jt74OXu9jmZRA-z-2kyfogkjXkVCaSFVQusKJWUKMul4JZJgrEwRCpuObeYjoRUYsHiODZWX1HOteCMchsb2gOD1lc1WYM3Ni19tpZ-k2KUbttMd2027FnLlvVibfSO_KuvAc5bQKqQrlztiyb6P0bflCd7bg</recordid><startdate>20121108</startdate><enddate>20121108</enddate><creator>Li, Yuzhen</creator><creator>Wang, Guanjun</creator><creator>Wang, Caixia</creator><creator>Zhou, Mingfei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121108</creationdate><title>Coordination and Solvation of the Au+ Cation: Infrared Photodissociation Spectroscopy of Mass-Selected Au(H2O) n + (n = 1–8) Complexes</title><author>Li, Yuzhen ; Wang, Guanjun ; Wang, Caixia ; Zhou, Mingfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-90d9fcb1c33a32cf8a98f5a2119e2ac8f88f1369ac9b5444efd7388d98538f4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cations - chemistry</topic><topic>Gold - chemistry</topic><topic>Photochemical Processes</topic><topic>Solubility</topic><topic>Spectrophotometry, Infrared</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuzhen</creatorcontrib><creatorcontrib>Wang, Guanjun</creatorcontrib><creatorcontrib>Wang, Caixia</creatorcontrib><creatorcontrib>Zhou, Mingfei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yuzhen</au><au>Wang, Guanjun</au><au>Wang, Caixia</au><au>Zhou, Mingfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination and Solvation of the Au+ Cation: Infrared Photodissociation Spectroscopy of Mass-Selected Au(H2O) n + (n = 1–8) Complexes</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2012-11-08</date><risdate>2012</risdate><volume>116</volume><issue>44</issue><spage>10793</spage><epage>10801</epage><pages>10793-10801</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Gold cation–water complexes with attached argon atoms are produced via a laser vaporization supersonic cluster source. The [Au(H2O) n Ar x ]+ (n = 1–8; x = 1 or 2) complexes are each mass selected and studied by infrared photodissociation spectroscopy in the OH stretching frequency region to explore the coordination and solvation structures of the Au+ cation. Density functional calculations have been performed, and the calculated vibrational spectra are compared to the experimental spectra to identify the gas-phase structures of the Au(H2O) n + complexes. Confirming previous theoretical predications, the first coordination shell of the Au+ cation contains two water molecules forming a linear O–Au+–O arrangement; subsequent water molecules bind to the two H2O ligands of the Au(H2O)2 + core ion via hydrogen bond forming of the second hydration shell, which is complete at n = 6. For the complexes with n ≤ 7, the experimental spectrum can in general be assigned to the predicted global minimum structure. However, the spectrum suggests that two or more conformers coexist for the n = 8 complex, indicating that the identification of a single global minimum becomes less important upon increasing the number of solvating water molecules.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23088325</pmid><doi>10.1021/jp3094963</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-11, Vol.116 (44), p.10793-10801 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp3094963 |
source | ACS Publications; MEDLINE |
subjects | Cations - chemistry Gold - chemistry Photochemical Processes Solubility Spectrophotometry, Infrared Water - chemistry |
title | Coordination and Solvation of the Au+ Cation: Infrared Photodissociation Spectroscopy of Mass-Selected Au(H2O) n + (n = 1–8) Complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20and%20Solvation%20of%20the%20Au+%20Cation:%20Infrared%20Photodissociation%20Spectroscopy%20of%20Mass-Selected%20Au(H2O)%20n%20+%20(n%20=%201%E2%80%938)%20Complexes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Li,%20Yuzhen&rft.date=2012-11-08&rft.volume=116&rft.issue=44&rft.spage=10793&rft.epage=10801&rft.pages=10793-10801&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp3094963&rft_dat=%3Cacs_cross%3Ec046718432%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/23088325&rfr_iscdi=true |