Parts per Million Water in Gaseous Vapor Streams Dramatically Accelerates Porous Silicon Oxidation

Substantial research has focused on exploiting and understanding porous silicon (pSi) photoluminescence (PL) for applications in areas ranging from chemical sensing to solid-state lighting. At ambient temperature, pure H2O is well-known to slowly (over a time scale of hours to days) and irreversibly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-11, Vol.116 (43), p.23168-23174
Hauptverfasser: Deuro, Randi E, Richardson, Joseph P, Reynard, Justin M, Caras, Caley A, Bright, Frank V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23174
container_issue 43
container_start_page 23168
container_title Journal of physical chemistry. C
container_volume 116
creator Deuro, Randi E
Richardson, Joseph P
Reynard, Justin M
Caras, Caley A
Bright, Frank V
description Substantial research has focused on exploiting and understanding porous silicon (pSi) photoluminescence (PL) for applications in areas ranging from chemical sensing to solid-state lighting. At ambient temperature, pure H2O is well-known to slowly (over a time scale of hours to days) and irreversibly oxidize as-prepared pSi (ap-pSi) to form oxidized pSi (ox-pSi). In this paper, we report that the apparent ap-pSi to ox-pSi oxidation rates can be orders of magnitude faster in the presence of nonaqueous vapor streams that contain just ppm H2O levels. When H2O is removed from the nonaqueous vapor stream, ap-pSi oxidation ceases. The nonaqueous analyte vapors serve as a vehicle to transport H2O directly into the hydrophobic, ap-pSi matrix where the H2O then oxidizes the ap-pSi leading to ox-pSi, permanently changing the pSi PL and surface chemistry. The ap-pSi oxidation rate is much faster in the presence of nonaqueous vapors because H2O transport into the pSi matrix is no longer limited by H2O slowly percolating–oxidizing–percolating through the ap-pSi matrix.
doi_str_mv 10.1021/jp308097d
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp308097d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c598878150</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-fe856307fd6bc4d36ffa2cefdf911179e6c7014de2be994f35f571248440a42e3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWKsL_0E2LlyM5jmZLEvVKlRaqI_lcJtJICWdGZIR7L83pVI3ru658J0D5yB0TckdJYzeb3pOKqJVc4JGVHNWKCHl6VELdY4uUtoQIjmhfITWS4hDwr2N-NWH4LsWf8KQP9_iGSTbfSX8AX0X8WqIFrYJP0TYwuANhLDDE2NssDE7El52cU-vfPAmxyy-fZO5rr1EZw5Csle_d4zenx7fps_FfDF7mU7mBbBKD4WzlSw5Ua4p10Y0vHQOmLGucZpSqrQtjSJUNJatrdbCcemkokxUQhAQzPIxuj3kmtilFK2r--i3EHc1JfV-nPo4TmZvDmwPKTdxEVrj09HAypJJQckfBybVm-4rtrnBP3k_PVZxSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parts per Million Water in Gaseous Vapor Streams Dramatically Accelerates Porous Silicon Oxidation</title><source>American Chemical Society Journals</source><creator>Deuro, Randi E ; Richardson, Joseph P ; Reynard, Justin M ; Caras, Caley A ; Bright, Frank V</creator><creatorcontrib>Deuro, Randi E ; Richardson, Joseph P ; Reynard, Justin M ; Caras, Caley A ; Bright, Frank V</creatorcontrib><description>Substantial research has focused on exploiting and understanding porous silicon (pSi) photoluminescence (PL) for applications in areas ranging from chemical sensing to solid-state lighting. At ambient temperature, pure H2O is well-known to slowly (over a time scale of hours to days) and irreversibly oxidize as-prepared pSi (ap-pSi) to form oxidized pSi (ox-pSi). In this paper, we report that the apparent ap-pSi to ox-pSi oxidation rates can be orders of magnitude faster in the presence of nonaqueous vapor streams that contain just ppm H2O levels. When H2O is removed from the nonaqueous vapor stream, ap-pSi oxidation ceases. The nonaqueous analyte vapors serve as a vehicle to transport H2O directly into the hydrophobic, ap-pSi matrix where the H2O then oxidizes the ap-pSi leading to ox-pSi, permanently changing the pSi PL and surface chemistry. The ap-pSi oxidation rate is much faster in the presence of nonaqueous vapors because H2O transport into the pSi matrix is no longer limited by H2O slowly percolating–oxidizing–percolating through the ap-pSi matrix.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp308097d</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Exact sciences and technology ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Photoluminescence ; Physics ; Porous materials</subject><ispartof>Journal of physical chemistry. C, 2012-11, Vol.116 (43), p.23168-23174</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-fe856307fd6bc4d36ffa2cefdf911179e6c7014de2be994f35f571248440a42e3</citedby><cites>FETCH-LOGICAL-a289t-fe856307fd6bc4d36ffa2cefdf911179e6c7014de2be994f35f571248440a42e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp308097d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp308097d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26625410$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deuro, Randi E</creatorcontrib><creatorcontrib>Richardson, Joseph P</creatorcontrib><creatorcontrib>Reynard, Justin M</creatorcontrib><creatorcontrib>Caras, Caley A</creatorcontrib><creatorcontrib>Bright, Frank V</creatorcontrib><title>Parts per Million Water in Gaseous Vapor Streams Dramatically Accelerates Porous Silicon Oxidation</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Substantial research has focused on exploiting and understanding porous silicon (pSi) photoluminescence (PL) for applications in areas ranging from chemical sensing to solid-state lighting. At ambient temperature, pure H2O is well-known to slowly (over a time scale of hours to days) and irreversibly oxidize as-prepared pSi (ap-pSi) to form oxidized pSi (ox-pSi). In this paper, we report that the apparent ap-pSi to ox-pSi oxidation rates can be orders of magnitude faster in the presence of nonaqueous vapor streams that contain just ppm H2O levels. When H2O is removed from the nonaqueous vapor stream, ap-pSi oxidation ceases. The nonaqueous analyte vapors serve as a vehicle to transport H2O directly into the hydrophobic, ap-pSi matrix where the H2O then oxidizes the ap-pSi leading to ox-pSi, permanently changing the pSi PL and surface chemistry. The ap-pSi oxidation rate is much faster in the presence of nonaqueous vapors because H2O transport into the pSi matrix is no longer limited by H2O slowly percolating–oxidizing–percolating through the ap-pSi matrix.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Exact sciences and technology</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Porous materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWKsL_0E2LlyM5jmZLEvVKlRaqI_lcJtJICWdGZIR7L83pVI3ru658J0D5yB0TckdJYzeb3pOKqJVc4JGVHNWKCHl6VELdY4uUtoQIjmhfITWS4hDwr2N-NWH4LsWf8KQP9_iGSTbfSX8AX0X8WqIFrYJP0TYwuANhLDDE2NssDE7El52cU-vfPAmxyy-fZO5rr1EZw5Csle_d4zenx7fps_FfDF7mU7mBbBKD4WzlSw5Ua4p10Y0vHQOmLGucZpSqrQtjSJUNJatrdbCcemkokxUQhAQzPIxuj3kmtilFK2r--i3EHc1JfV-nPo4TmZvDmwPKTdxEVrj09HAypJJQckfBybVm-4rtrnBP3k_PVZxSw</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Deuro, Randi E</creator><creator>Richardson, Joseph P</creator><creator>Reynard, Justin M</creator><creator>Caras, Caley A</creator><creator>Bright, Frank V</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Parts per Million Water in Gaseous Vapor Streams Dramatically Accelerates Porous Silicon Oxidation</title><author>Deuro, Randi E ; Richardson, Joseph P ; Reynard, Justin M ; Caras, Caley A ; Bright, Frank V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-fe856307fd6bc4d36ffa2cefdf911179e6c7014de2be994f35f571248440a42e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Exact sciences and technology</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Porous materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deuro, Randi E</creatorcontrib><creatorcontrib>Richardson, Joseph P</creatorcontrib><creatorcontrib>Reynard, Justin M</creatorcontrib><creatorcontrib>Caras, Caley A</creatorcontrib><creatorcontrib>Bright, Frank V</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deuro, Randi E</au><au>Richardson, Joseph P</au><au>Reynard, Justin M</au><au>Caras, Caley A</au><au>Bright, Frank V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parts per Million Water in Gaseous Vapor Streams Dramatically Accelerates Porous Silicon Oxidation</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>116</volume><issue>43</issue><spage>23168</spage><epage>23174</epage><pages>23168-23174</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Substantial research has focused on exploiting and understanding porous silicon (pSi) photoluminescence (PL) for applications in areas ranging from chemical sensing to solid-state lighting. At ambient temperature, pure H2O is well-known to slowly (over a time scale of hours to days) and irreversibly oxidize as-prepared pSi (ap-pSi) to form oxidized pSi (ox-pSi). In this paper, we report that the apparent ap-pSi to ox-pSi oxidation rates can be orders of magnitude faster in the presence of nonaqueous vapor streams that contain just ppm H2O levels. When H2O is removed from the nonaqueous vapor stream, ap-pSi oxidation ceases. The nonaqueous analyte vapors serve as a vehicle to transport H2O directly into the hydrophobic, ap-pSi matrix where the H2O then oxidizes the ap-pSi leading to ox-pSi, permanently changing the pSi PL and surface chemistry. The ap-pSi oxidation rate is much faster in the presence of nonaqueous vapors because H2O transport into the pSi matrix is no longer limited by H2O slowly percolating–oxidizing–percolating through the ap-pSi matrix.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp308097d</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-11, Vol.116 (43), p.23168-23174
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp308097d
source American Chemical Society Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Exact sciences and technology
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Photoluminescence
Physics
Porous materials
title Parts per Million Water in Gaseous Vapor Streams Dramatically Accelerates Porous Silicon Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parts%20per%20Million%20Water%20in%20Gaseous%20Vapor%20Streams%20Dramatically%20Accelerates%20Porous%20Silicon%20Oxidation&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Deuro,%20Randi%20E&rft.date=2012-11-01&rft.volume=116&rft.issue=43&rft.spage=23168&rft.epage=23174&rft.pages=23168-23174&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp308097d&rft_dat=%3Cacs_cross%3Ec598878150%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true