Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore

We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling curren...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-10, Vol.116 (40), p.21609-21614
Hauptverfasser: Guo, Yan-Dong, Yan, Xiao-Hong, Xiao, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21614
container_issue 40
container_start_page 21609
container_title Journal of physical chemistry. C
container_volume 116
creator Guo, Yan-Dong
Yan, Xiao-Hong
Xiao, Yang
description We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram.
doi_str_mv 10.1021/jp305909p
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp305909p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c349276052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRsFYX_oNsXLiIzrNJljWtWih1YbsTwu1kpiSkmTA3Ffz3jq3EjZv7OJx7uHyE3DL6wChnj3UnqMpo1p2REcsEjxOp1Pkwy-SSXCHWlCpBmRiRj9ztu0MPfeVaaKJF-2mwr3bHPXI2mq2m0cz0Rh-FDVbtLnoPpTHxvAmqD-raQ4sV9s7HT4CmjFbQus55c00uLDRobn77mGye5-v8NV6-vSzy6TIGoVQfa7NluqRCJGILWSlSpkomwUrBQaqJDStIC1KoVOmtZCzVpgRgiZK81BMtxuT-lKu9Q_TGFp2v9uC_CkaLHyzFgCV4707eDlBDY8PvusLhgE9UgMT5nw80FrU7-IAH_8n7Bn50b4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</title><source>ACS Publications</source><creator>Guo, Yan-Dong ; Yan, Xiao-Hong ; Xiao, Yang</creator><creatorcontrib>Guo, Yan-Dong ; Yan, Xiao-Hong ; Xiao, Yang</creatorcontrib><description>We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp305909p</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Biological and medical sciences ; Biotechnology ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Methods. Procedures. Technologies ; Synthetic digonucleotides and genes. Sequencing</subject><ispartof>Journal of physical chemistry. C, 2012-10, Vol.116 (40), p.21609-21614</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</citedby><cites>FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp305909p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp305909p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26544722$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yan-Dong</creatorcontrib><creatorcontrib>Yan, Xiao-Hong</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><title>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Methods. Procedures. Technologies</subject><subject>Synthetic digonucleotides and genes. Sequencing</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEtLw0AUhQdRsFYX_oNsXLiIzrNJljWtWih1YbsTwu1kpiSkmTA3Ffz3jq3EjZv7OJx7uHyE3DL6wChnj3UnqMpo1p2REcsEjxOp1Pkwy-SSXCHWlCpBmRiRj9ztu0MPfeVaaKJF-2mwr3bHPXI2mq2m0cz0Rh-FDVbtLnoPpTHxvAmqD-raQ4sV9s7HT4CmjFbQus55c00uLDRobn77mGye5-v8NV6-vSzy6TIGoVQfa7NluqRCJGILWSlSpkomwUrBQaqJDStIC1KoVOmtZCzVpgRgiZK81BMtxuT-lKu9Q_TGFp2v9uC_CkaLHyzFgCV4707eDlBDY8PvusLhgE9UgMT5nw80FrU7-IAH_8n7Bn50b4A</recordid><startdate>20121011</startdate><enddate>20121011</enddate><creator>Guo, Yan-Dong</creator><creator>Yan, Xiao-Hong</creator><creator>Xiao, Yang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121011</creationdate><title>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</title><author>Guo, Yan-Dong ; Yan, Xiao-Hong ; Xiao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Methods. Procedures. Technologies</topic><topic>Synthetic digonucleotides and genes. Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yan-Dong</creatorcontrib><creatorcontrib>Yan, Xiao-Hong</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yan-Dong</au><au>Yan, Xiao-Hong</au><au>Xiao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-10-11</date><risdate>2012</risdate><volume>116</volume><issue>40</issue><spage>21609</spage><epage>21614</epage><pages>21609-21614</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp305909p</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-10, Vol.116 (40), p.21609-21614
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp305909p
source ACS Publications
subjects Biological and medical sciences
Biotechnology
Fundamental and applied biological sciences. Psychology
Genetic engineering
Genetic technics
Methods. Procedures. Technologies
Synthetic digonucleotides and genes. Sequencing
title Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Investigation%20of%20DNA%20Detection%20Using%20Single-Electron%20Transistor-Based%20Nanopore&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Guo,%20Yan-Dong&rft.date=2012-10-11&rft.volume=116&rft.issue=40&rft.spage=21609&rft.epage=21614&rft.pages=21609-21614&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp305909p&rft_dat=%3Cacs_cross%3Ec349276052%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true