Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore
We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling curren...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-10, Vol.116 (40), p.21609-21614 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21614 |
---|---|
container_issue | 40 |
container_start_page | 21609 |
container_title | Journal of physical chemistry. C |
container_volume | 116 |
creator | Guo, Yan-Dong Yan, Xiao-Hong Xiao, Yang |
description | We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram. |
doi_str_mv | 10.1021/jp305909p |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp305909p</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c349276052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</originalsourceid><addsrcrecordid>eNptkEtLw0AUhQdRsFYX_oNsXLiIzrNJljWtWih1YbsTwu1kpiSkmTA3Ffz3jq3EjZv7OJx7uHyE3DL6wChnj3UnqMpo1p2REcsEjxOp1Pkwy-SSXCHWlCpBmRiRj9ztu0MPfeVaaKJF-2mwr3bHPXI2mq2m0cz0Rh-FDVbtLnoPpTHxvAmqD-raQ4sV9s7HT4CmjFbQus55c00uLDRobn77mGye5-v8NV6-vSzy6TIGoVQfa7NluqRCJGILWSlSpkomwUrBQaqJDStIC1KoVOmtZCzVpgRgiZK81BMtxuT-lKu9Q_TGFp2v9uC_CkaLHyzFgCV4707eDlBDY8PvusLhgE9UgMT5nw80FrU7-IAH_8n7Bn50b4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</title><source>ACS Publications</source><creator>Guo, Yan-Dong ; Yan, Xiao-Hong ; Xiao, Yang</creator><creatorcontrib>Guo, Yan-Dong ; Yan, Xiao-Hong ; Xiao, Yang</creatorcontrib><description>We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp305909p</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Biological and medical sciences ; Biotechnology ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Methods. Procedures. Technologies ; Synthetic digonucleotides and genes. Sequencing</subject><ispartof>Journal of physical chemistry. C, 2012-10, Vol.116 (40), p.21609-21614</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</citedby><cites>FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp305909p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp305909p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26544722$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yan-Dong</creatorcontrib><creatorcontrib>Yan, Xiao-Hong</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><title>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram.</description><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Methods. Procedures. Technologies</subject><subject>Synthetic digonucleotides and genes. Sequencing</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEtLw0AUhQdRsFYX_oNsXLiIzrNJljWtWih1YbsTwu1kpiSkmTA3Ffz3jq3EjZv7OJx7uHyE3DL6wChnj3UnqMpo1p2REcsEjxOp1Pkwy-SSXCHWlCpBmRiRj9ztu0MPfeVaaKJF-2mwr3bHPXI2mq2m0cz0Rh-FDVbtLnoPpTHxvAmqD-raQ4sV9s7HT4CmjFbQus55c00uLDRobn77mGye5-v8NV6-vSzy6TIGoVQfa7NluqRCJGILWSlSpkomwUrBQaqJDStIC1KoVOmtZCzVpgRgiZK81BMtxuT-lKu9Q_TGFp2v9uC_CkaLHyzFgCV4707eDlBDY8PvusLhgE9UgMT5nw80FrU7-IAH_8n7Bn50b4A</recordid><startdate>20121011</startdate><enddate>20121011</enddate><creator>Guo, Yan-Dong</creator><creator>Yan, Xiao-Hong</creator><creator>Xiao, Yang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121011</creationdate><title>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</title><author>Guo, Yan-Dong ; Yan, Xiao-Hong ; Xiao, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-ceb1cd03373ba9d3815d14af432a456f15da4fa43585cb4118cedaa17542dc6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Methods. Procedures. Technologies</topic><topic>Synthetic digonucleotides and genes. Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yan-Dong</creatorcontrib><creatorcontrib>Yan, Xiao-Hong</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yan-Dong</au><au>Yan, Xiao-Hong</au><au>Xiao, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-10-11</date><risdate>2012</risdate><volume>116</volume><issue>40</issue><spage>21609</spage><epage>21614</epage><pages>21609-21614</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We propose a single-electron transistor (SET)-based nanopore sensor for DNA sequencing, which consists of source, drain, and gate electrodes, as well as a nanopore where the DNA molecule is pulled through. For nanopore sensors based on transverse electronic transport, generally, the tunneling current is relatively small due to the weak coupling between the molecule and electrodes. We take full advantage of this feature by introducing SET to make the device operate in Coulomb-blockade regime. Through first-principles simulations, the charge stability diagrams of the nucleobases within the SET-nanopore environment are demonstrated to be distinctive for each molecule and, more importantly, independent of the nucleobase orientation, which can be served as electronic fingerprint for detection. We show that identifying the nucleobases can be achieved only though several specific regions or points in the diagram.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp305909p</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2012-10, Vol.116 (40), p.21609-21614 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp305909p |
source | ACS Publications |
subjects | Biological and medical sciences Biotechnology Fundamental and applied biological sciences. Psychology Genetic engineering Genetic technics Methods. Procedures. Technologies Synthetic digonucleotides and genes. Sequencing |
title | Computational Investigation of DNA Detection Using Single-Electron Transistor-Based Nanopore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Investigation%20of%20DNA%20Detection%20Using%20Single-Electron%20Transistor-Based%20Nanopore&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Guo,%20Yan-Dong&rft.date=2012-10-11&rft.volume=116&rft.issue=40&rft.spage=21609&rft.epage=21614&rft.pages=21609-21614&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp305909p&rft_dat=%3Cacs_cross%3Ec349276052%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |