High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability
A simple and efficient sol–gel/electrospinning technique is employed for the preparation of high aspect ratio CuO nanofibers. Characterizations studies including X-ray diffraction, scanning electron microscopy, High-resolution-transmission electron microscopy are employed to analyze the crystal stru...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-08, Vol.116 (34), p.18087-18092 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18092 |
---|---|
container_issue | 34 |
container_start_page | 18087 |
container_title | Journal of physical chemistry. C |
container_volume | 116 |
creator | Sahay, Rahul Suresh Kumar, Palaniswamy Aravindan, Vanchiappan Sundaramurthy, Jayaraman Chui Ling, Wong Mhaisalkar, Subodh G Ramakrishna, Seeram Madhavi, Srinivasan |
description | A simple and efficient sol–gel/electrospinning technique is employed for the preparation of high aspect ratio CuO nanofibers. Characterizations studies including X-ray diffraction, scanning electron microscopy, High-resolution-transmission electron microscopy are employed to analyze the crystal structure, and morphology of electrospun CuO nanofibers. Electrochemical lithium storage properties are evaluated in half-cell configurations at room temperature between 0.005 and 3 V vs Li. Cyclic voltammetry is used to study the reaction mechanism during charge–discharge process. Electrospun CuO nanofibers delivered stable reversible capacity of 452 mAh g–1 at current density of 100 mA g–1 in half-cell configuration (Li/CuO nanofibers). The cell displayed the very stable cycling behavior up to 100 cycles at current density of 100 mA g–1. Rate capability studies of CuO nanofibers are conducted and presented. Our studies have shown that the enhanced cycleability of CuO electrospun nanofibers are due to the fibrous morphology formed by nanoscopic CuO particles which could not only increase the electrode/electrolyte contact area but also enables the facile partial reduction of Cu2O into metallic particles (Cu0). |
doi_str_mv | 10.1021/jp3053949 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp3053949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b289435770</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-997782a62b8a9d1774ea358bfb5b20cccd68b8140233bdf19e3ea805f0a8b00c3</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEqWw4A-8YcEi4EfS2MsStbRSoRKPdTR2bOoqTSI7Eerf46qobFjNnZkzI92L0C0lD5Qw-rjtOMm4TOUZGlHJWZKnWXZ-0ml-ia5C2JIIEcpHKCzc1wZPQ2d0j9-gdy2e1VH7NnRDg4thjV-haa1TxgcMAU-btjL4BXrjHdTYth6vXL9xwy5Ztg1-gv6wMQF_xyl-H7rYRabY69qAcrXr99fowkIdzM1vHaPP-eyjWCSr9fOymK4SYEL2iZR5LhhMmBIgK5rnqQGeCWVVphjRWlcToQRNCeNcVZZKww0IklkCQhGi-RjdH__q6CZ4Y8vOux34fUlJeUirPKUV2bsj20HQUFsPjXbhdMAmnKU0S_840KHctoNvooN__v0AHAF2eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability</title><source>American Chemical Society Journals</source><creator>Sahay, Rahul ; Suresh Kumar, Palaniswamy ; Aravindan, Vanchiappan ; Sundaramurthy, Jayaraman ; Chui Ling, Wong ; Mhaisalkar, Subodh G ; Ramakrishna, Seeram ; Madhavi, Srinivasan</creator><creatorcontrib>Sahay, Rahul ; Suresh Kumar, Palaniswamy ; Aravindan, Vanchiappan ; Sundaramurthy, Jayaraman ; Chui Ling, Wong ; Mhaisalkar, Subodh G ; Ramakrishna, Seeram ; Madhavi, Srinivasan</creatorcontrib><description>A simple and efficient sol–gel/electrospinning technique is employed for the preparation of high aspect ratio CuO nanofibers. Characterizations studies including X-ray diffraction, scanning electron microscopy, High-resolution-transmission electron microscopy are employed to analyze the crystal structure, and morphology of electrospun CuO nanofibers. Electrochemical lithium storage properties are evaluated in half-cell configurations at room temperature between 0.005 and 3 V vs Li. Cyclic voltammetry is used to study the reaction mechanism during charge–discharge process. Electrospun CuO nanofibers delivered stable reversible capacity of 452 mAh g–1 at current density of 100 mA g–1 in half-cell configuration (Li/CuO nanofibers). The cell displayed the very stable cycling behavior up to 100 cycles at current density of 100 mA g–1. Rate capability studies of CuO nanofibers are conducted and presented. Our studies have shown that the enhanced cycleability of CuO electrospun nanofibers are due to the fibrous morphology formed by nanoscopic CuO particles which could not only increase the electrode/electrolyte contact area but also enables the facile partial reduction of Cu2O into metallic particles (Cu0).</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp3053949</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Chemistry ; Cross-disciplinary physics: materials science; rheology ; Electrochemistry ; Electrodes: preparations and properties ; Exact sciences and technology ; General and physical chemistry ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics</subject><ispartof>Journal of physical chemistry. C, 2012-08, Vol.116 (34), p.18087-18092</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-997782a62b8a9d1774ea358bfb5b20cccd68b8140233bdf19e3ea805f0a8b00c3</citedby><cites>FETCH-LOGICAL-a289t-997782a62b8a9d1774ea358bfb5b20cccd68b8140233bdf19e3ea805f0a8b00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp3053949$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp3053949$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26324154$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sahay, Rahul</creatorcontrib><creatorcontrib>Suresh Kumar, Palaniswamy</creatorcontrib><creatorcontrib>Aravindan, Vanchiappan</creatorcontrib><creatorcontrib>Sundaramurthy, Jayaraman</creatorcontrib><creatorcontrib>Chui Ling, Wong</creatorcontrib><creatorcontrib>Mhaisalkar, Subodh G</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Madhavi, Srinivasan</creatorcontrib><title>High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A simple and efficient sol–gel/electrospinning technique is employed for the preparation of high aspect ratio CuO nanofibers. Characterizations studies including X-ray diffraction, scanning electron microscopy, High-resolution-transmission electron microscopy are employed to analyze the crystal structure, and morphology of electrospun CuO nanofibers. Electrochemical lithium storage properties are evaluated in half-cell configurations at room temperature between 0.005 and 3 V vs Li. Cyclic voltammetry is used to study the reaction mechanism during charge–discharge process. Electrospun CuO nanofibers delivered stable reversible capacity of 452 mAh g–1 at current density of 100 mA g–1 in half-cell configuration (Li/CuO nanofibers). The cell displayed the very stable cycling behavior up to 100 cycles at current density of 100 mA g–1. Rate capability studies of CuO nanofibers are conducted and presented. Our studies have shown that the enhanced cycleability of CuO electrospun nanofibers are due to the fibrous morphology formed by nanoscopic CuO particles which could not only increase the electrode/electrolyte contact area but also enables the facile partial reduction of Cu2O into metallic particles (Cu0).</description><subject>Chemistry</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrochemistry</subject><subject>Electrodes: preparations and properties</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EEqWw4A-8YcEi4EfS2MsStbRSoRKPdTR2bOoqTSI7Eerf46qobFjNnZkzI92L0C0lD5Qw-rjtOMm4TOUZGlHJWZKnWXZ-0ml-ia5C2JIIEcpHKCzc1wZPQ2d0j9-gdy2e1VH7NnRDg4thjV-haa1TxgcMAU-btjL4BXrjHdTYth6vXL9xwy5Ztg1-gv6wMQF_xyl-H7rYRabY69qAcrXr99fowkIdzM1vHaPP-eyjWCSr9fOymK4SYEL2iZR5LhhMmBIgK5rnqQGeCWVVphjRWlcToQRNCeNcVZZKww0IklkCQhGi-RjdH__q6CZ4Y8vOux34fUlJeUirPKUV2bsj20HQUFsPjXbhdMAmnKU0S_840KHctoNvooN__v0AHAF2eg</recordid><startdate>20120830</startdate><enddate>20120830</enddate><creator>Sahay, Rahul</creator><creator>Suresh Kumar, Palaniswamy</creator><creator>Aravindan, Vanchiappan</creator><creator>Sundaramurthy, Jayaraman</creator><creator>Chui Ling, Wong</creator><creator>Mhaisalkar, Subodh G</creator><creator>Ramakrishna, Seeram</creator><creator>Madhavi, Srinivasan</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120830</creationdate><title>High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability</title><author>Sahay, Rahul ; Suresh Kumar, Palaniswamy ; Aravindan, Vanchiappan ; Sundaramurthy, Jayaraman ; Chui Ling, Wong ; Mhaisalkar, Subodh G ; Ramakrishna, Seeram ; Madhavi, Srinivasan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-997782a62b8a9d1774ea358bfb5b20cccd68b8140233bdf19e3ea805f0a8b00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrochemistry</topic><topic>Electrodes: preparations and properties</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahay, Rahul</creatorcontrib><creatorcontrib>Suresh Kumar, Palaniswamy</creatorcontrib><creatorcontrib>Aravindan, Vanchiappan</creatorcontrib><creatorcontrib>Sundaramurthy, Jayaraman</creatorcontrib><creatorcontrib>Chui Ling, Wong</creatorcontrib><creatorcontrib>Mhaisalkar, Subodh G</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Madhavi, Srinivasan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahay, Rahul</au><au>Suresh Kumar, Palaniswamy</au><au>Aravindan, Vanchiappan</au><au>Sundaramurthy, Jayaraman</au><au>Chui Ling, Wong</au><au>Mhaisalkar, Subodh G</au><au>Ramakrishna, Seeram</au><au>Madhavi, Srinivasan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-08-30</date><risdate>2012</risdate><volume>116</volume><issue>34</issue><spage>18087</spage><epage>18092</epage><pages>18087-18092</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A simple and efficient sol–gel/electrospinning technique is employed for the preparation of high aspect ratio CuO nanofibers. Characterizations studies including X-ray diffraction, scanning electron microscopy, High-resolution-transmission electron microscopy are employed to analyze the crystal structure, and morphology of electrospun CuO nanofibers. Electrochemical lithium storage properties are evaluated in half-cell configurations at room temperature between 0.005 and 3 V vs Li. Cyclic voltammetry is used to study the reaction mechanism during charge–discharge process. Electrospun CuO nanofibers delivered stable reversible capacity of 452 mAh g–1 at current density of 100 mA g–1 in half-cell configuration (Li/CuO nanofibers). The cell displayed the very stable cycling behavior up to 100 cycles at current density of 100 mA g–1. Rate capability studies of CuO nanofibers are conducted and presented. Our studies have shown that the enhanced cycleability of CuO electrospun nanofibers are due to the fibrous morphology formed by nanoscopic CuO particles which could not only increase the electrode/electrolyte contact area but also enables the facile partial reduction of Cu2O into metallic particles (Cu0).</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp3053949</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2012-08, Vol.116 (34), p.18087-18092 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp3053949 |
source | American Chemical Society Journals |
subjects | Chemistry Cross-disciplinary physics: materials science rheology Electrochemistry Electrodes: preparations and properties Exact sciences and technology General and physical chemistry Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Physics |
title | High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Aspect%20Ratio%20Electrospun%20CuO%20Nanofibers%20as%20Anode%20Material%20for%20Lithium-Ion%20Batteries%20with%20Superior%20Cycleability&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sahay,%20Rahul&rft.date=2012-08-30&rft.volume=116&rft.issue=34&rft.spage=18087&rft.epage=18092&rft.pages=18087-18092&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp3053949&rft_dat=%3Cacs_cross%3Eb289435770%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |