Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis

Chemical environment plays a significant role on the size, shape, or surface composition of nanostructures. Here, the chemical environment effects are studied in the context of core–shell nanoparticle synthesis. The environment driven dynamics and kinetics of Rh/Pd bilayers is investigated by in sit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-07, Vol.116 (27), p.14401-14407
Hauptverfasser: Abrasonis, Gintautas, Wintz, Sebastian, Liedke, Maciej O, Aksoy Akgul, Funda, Krause, Matthias, Kuepper, Karsten, Banerjee, Dipanjan, Liu, Zhi, Gemming, Sibylle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14407
container_issue 27
container_start_page 14401
container_title Journal of physical chemistry. C
container_volume 116
creator Abrasonis, Gintautas
Wintz, Sebastian
Liedke, Maciej O
Aksoy Akgul, Funda
Krause, Matthias
Kuepper, Karsten
Banerjee, Dipanjan
Liu, Zhi
Gemming, Sibylle
description Chemical environment plays a significant role on the size, shape, or surface composition of nanostructures. Here, the chemical environment effects are studied in the context of core–shell nanoparticle synthesis. The environment driven dynamics and kinetics of Rh/Pd bilayers is investigated by in situ ambient pressure X-ray photoelectron spectroscopy. Thin Rh (∼1.5 nm)/Pd (∼ 1.5 nm) bilayers were grown on thermally oxidized Si substrates. The films were heated in CO or NO environments or heated in vacuum with a subsequent NO/CO cycling. This study demonstrates that not the initial stacking sequence but the chemical environment plays a crucial role in controlling the surface composition. Heating in CO results in a surface enrichment of Pd at ∼200 °C and is followed by film dewetting at ∼300 °C. Heating in NO results in progressive oxidation of Rh starting at ∼150 °C, which stabilizes the film continuity up to >∼375 °C. The film rupture correlates with the thermal destabilization of the surface oxide. Heating in vacuum results in a significant increase in surface Pd concentration, and the following NO/CO cycling induces periodic surface composition changes. The quasi-equilibrium states are ∼50% and ∼20% of Rh/(Rh + Pd) for NO and CO environments, respectively. Possible surface composition change and dewetting mechanisms are discussed on the basis of the interplay of thermodynamic (surface/oxide energy and surface wetting) and kinetic (surface oxidation and thermally induced and chemically enhanced diffusion) factors. The results open alternative ways to synthesize supported (core–shell) nanostructures with controlled morphology and surface composition.
doi_str_mv 10.1021/jp302908x
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp302908x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c120938623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-bd4000132e5f6f9919e8f0488368bcd02c17f1e487cc2b4e45fe9ee88f3b6e4b3</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EEqWw4AbesGBRsB0nsdmVUn6kClAL68hxxjRVale2A3THHbghJyGoqGxYzUjzvad5D6FjSs4oYfR8sUoIk0S876AelQkb5DxNd7c7z_fRQQgLQtKE0KSHzNi-1t7ZJdiIR85G75oGKnwFbxBjbV-wM3g6__r4fKzwZd2oNfhwgYd46toI2DjfqTx099kcmgbfK-tC9K2OrQc8W9s4h1CHQ7RnVBPg6Hf20fP1-Gl0O5g83NyNhpOBYkLGQVlxQrq_GKQmM1JSCcIQLkSSiVJXhGmaGwpc5FqzkgNPDUgAIUxSZsDLpI9ON77auxA8mGLl66Xy64KS4qegYltQx55s2JUKWjXGK6vrsBWwjDEiM_7HKR2KhWu97RL84_cNPDF0xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis</title><source>ACS Publications</source><creator>Abrasonis, Gintautas ; Wintz, Sebastian ; Liedke, Maciej O ; Aksoy Akgul, Funda ; Krause, Matthias ; Kuepper, Karsten ; Banerjee, Dipanjan ; Liu, Zhi ; Gemming, Sibylle</creator><creatorcontrib>Abrasonis, Gintautas ; Wintz, Sebastian ; Liedke, Maciej O ; Aksoy Akgul, Funda ; Krause, Matthias ; Kuepper, Karsten ; Banerjee, Dipanjan ; Liu, Zhi ; Gemming, Sibylle</creatorcontrib><description>Chemical environment plays a significant role on the size, shape, or surface composition of nanostructures. Here, the chemical environment effects are studied in the context of core–shell nanoparticle synthesis. The environment driven dynamics and kinetics of Rh/Pd bilayers is investigated by in situ ambient pressure X-ray photoelectron spectroscopy. Thin Rh (∼1.5 nm)/Pd (∼ 1.5 nm) bilayers were grown on thermally oxidized Si substrates. The films were heated in CO or NO environments or heated in vacuum with a subsequent NO/CO cycling. This study demonstrates that not the initial stacking sequence but the chemical environment plays a crucial role in controlling the surface composition. Heating in CO results in a surface enrichment of Pd at ∼200 °C and is followed by film dewetting at ∼300 °C. Heating in NO results in progressive oxidation of Rh starting at ∼150 °C, which stabilizes the film continuity up to &gt;∼375 °C. The film rupture correlates with the thermal destabilization of the surface oxide. Heating in vacuum results in a significant increase in surface Pd concentration, and the following NO/CO cycling induces periodic surface composition changes. The quasi-equilibrium states are ∼50% and ∼20% of Rh/(Rh + Pd) for NO and CO environments, respectively. Possible surface composition change and dewetting mechanisms are discussed on the basis of the interplay of thermodynamic (surface/oxide energy and surface wetting) and kinetic (surface oxidation and thermally induced and chemically enhanced diffusion) factors. The results open alternative ways to synthesize supported (core–shell) nanostructures with controlled morphology and surface composition.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp302908x</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electron, ion, and scanning probe microscopy ; Exact sciences and technology ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Other topics in nanoscale materials and structures ; Physics ; Solid-fluid interfaces ; Structure and morphology; thickness ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; Wetting</subject><ispartof>Journal of physical chemistry. C, 2012-07, Vol.116 (27), p.14401-14407</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-bd4000132e5f6f9919e8f0488368bcd02c17f1e487cc2b4e45fe9ee88f3b6e4b3</citedby><cites>FETCH-LOGICAL-a289t-bd4000132e5f6f9919e8f0488368bcd02c17f1e487cc2b4e45fe9ee88f3b6e4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp302908x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp302908x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26220964$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrasonis, Gintautas</creatorcontrib><creatorcontrib>Wintz, Sebastian</creatorcontrib><creatorcontrib>Liedke, Maciej O</creatorcontrib><creatorcontrib>Aksoy Akgul, Funda</creatorcontrib><creatorcontrib>Krause, Matthias</creatorcontrib><creatorcontrib>Kuepper, Karsten</creatorcontrib><creatorcontrib>Banerjee, Dipanjan</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Gemming, Sibylle</creatorcontrib><title>Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Chemical environment plays a significant role on the size, shape, or surface composition of nanostructures. Here, the chemical environment effects are studied in the context of core–shell nanoparticle synthesis. The environment driven dynamics and kinetics of Rh/Pd bilayers is investigated by in situ ambient pressure X-ray photoelectron spectroscopy. Thin Rh (∼1.5 nm)/Pd (∼ 1.5 nm) bilayers were grown on thermally oxidized Si substrates. The films were heated in CO or NO environments or heated in vacuum with a subsequent NO/CO cycling. This study demonstrates that not the initial stacking sequence but the chemical environment plays a crucial role in controlling the surface composition. Heating in CO results in a surface enrichment of Pd at ∼200 °C and is followed by film dewetting at ∼300 °C. Heating in NO results in progressive oxidation of Rh starting at ∼150 °C, which stabilizes the film continuity up to &gt;∼375 °C. The film rupture correlates with the thermal destabilization of the surface oxide. Heating in vacuum results in a significant increase in surface Pd concentration, and the following NO/CO cycling induces periodic surface composition changes. The quasi-equilibrium states are ∼50% and ∼20% of Rh/(Rh + Pd) for NO and CO environments, respectively. Possible surface composition change and dewetting mechanisms are discussed on the basis of the interplay of thermodynamic (surface/oxide energy and surface wetting) and kinetic (surface oxidation and thermally induced and chemically enhanced diffusion) factors. The results open alternative ways to synthesize supported (core–shell) nanostructures with controlled morphology and surface composition.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron, ion, and scanning probe microscopy</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Physics</subject><subject>Solid-fluid interfaces</subject><subject>Structure and morphology; thickness</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>Wetting</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkE1OwzAQhS0EEqWw4AbesGBRsB0nsdmVUn6kClAL68hxxjRVale2A3THHbghJyGoqGxYzUjzvad5D6FjSs4oYfR8sUoIk0S876AelQkb5DxNd7c7z_fRQQgLQtKE0KSHzNi-1t7ZJdiIR85G75oGKnwFbxBjbV-wM3g6__r4fKzwZd2oNfhwgYd46toI2DjfqTx099kcmgbfK-tC9K2OrQc8W9s4h1CHQ7RnVBPg6Hf20fP1-Gl0O5g83NyNhpOBYkLGQVlxQrq_GKQmM1JSCcIQLkSSiVJXhGmaGwpc5FqzkgNPDUgAIUxSZsDLpI9ON77auxA8mGLl66Xy64KS4qegYltQx55s2JUKWjXGK6vrsBWwjDEiM_7HKR2KhWu97RL84_cNPDF0xQ</recordid><startdate>20120712</startdate><enddate>20120712</enddate><creator>Abrasonis, Gintautas</creator><creator>Wintz, Sebastian</creator><creator>Liedke, Maciej O</creator><creator>Aksoy Akgul, Funda</creator><creator>Krause, Matthias</creator><creator>Kuepper, Karsten</creator><creator>Banerjee, Dipanjan</creator><creator>Liu, Zhi</creator><creator>Gemming, Sibylle</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120712</creationdate><title>Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis</title><author>Abrasonis, Gintautas ; Wintz, Sebastian ; Liedke, Maciej O ; Aksoy Akgul, Funda ; Krause, Matthias ; Kuepper, Karsten ; Banerjee, Dipanjan ; Liu, Zhi ; Gemming, Sibylle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-bd4000132e5f6f9919e8f0488368bcd02c17f1e487cc2b4e45fe9ee88f3b6e4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron, ion, and scanning probe microscopy</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Physics</topic><topic>Solid-fluid interfaces</topic><topic>Structure and morphology; thickness</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrasonis, Gintautas</creatorcontrib><creatorcontrib>Wintz, Sebastian</creatorcontrib><creatorcontrib>Liedke, Maciej O</creatorcontrib><creatorcontrib>Aksoy Akgul, Funda</creatorcontrib><creatorcontrib>Krause, Matthias</creatorcontrib><creatorcontrib>Kuepper, Karsten</creatorcontrib><creatorcontrib>Banerjee, Dipanjan</creatorcontrib><creatorcontrib>Liu, Zhi</creatorcontrib><creatorcontrib>Gemming, Sibylle</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrasonis, Gintautas</au><au>Wintz, Sebastian</au><au>Liedke, Maciej O</au><au>Aksoy Akgul, Funda</au><au>Krause, Matthias</au><au>Kuepper, Karsten</au><au>Banerjee, Dipanjan</au><au>Liu, Zhi</au><au>Gemming, Sibylle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-07-12</date><risdate>2012</risdate><volume>116</volume><issue>27</issue><spage>14401</spage><epage>14407</epage><pages>14401-14407</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Chemical environment plays a significant role on the size, shape, or surface composition of nanostructures. Here, the chemical environment effects are studied in the context of core–shell nanoparticle synthesis. The environment driven dynamics and kinetics of Rh/Pd bilayers is investigated by in situ ambient pressure X-ray photoelectron spectroscopy. Thin Rh (∼1.5 nm)/Pd (∼ 1.5 nm) bilayers were grown on thermally oxidized Si substrates. The films were heated in CO or NO environments or heated in vacuum with a subsequent NO/CO cycling. This study demonstrates that not the initial stacking sequence but the chemical environment plays a crucial role in controlling the surface composition. Heating in CO results in a surface enrichment of Pd at ∼200 °C and is followed by film dewetting at ∼300 °C. Heating in NO results in progressive oxidation of Rh starting at ∼150 °C, which stabilizes the film continuity up to &gt;∼375 °C. The film rupture correlates with the thermal destabilization of the surface oxide. Heating in vacuum results in a significant increase in surface Pd concentration, and the following NO/CO cycling induces periodic surface composition changes. The quasi-equilibrium states are ∼50% and ∼20% of Rh/(Rh + Pd) for NO and CO environments, respectively. Possible surface composition change and dewetting mechanisms are discussed on the basis of the interplay of thermodynamic (surface/oxide energy and surface wetting) and kinetic (surface oxidation and thermally induced and chemically enhanced diffusion) factors. The results open alternative ways to synthesize supported (core–shell) nanostructures with controlled morphology and surface composition.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp302908x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-07, Vol.116 (27), p.14401-14407
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp302908x
source ACS Publications
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electron, ion, and scanning probe microscopy
Exact sciences and technology
Materials science
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Solid-fluid interfaces
Structure and morphology
thickness
Structure of solids and liquids
crystallography
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
Wetting
title Environment Controlled Dewetting of Rh–Pd Bilayers: A Route for Core–Shell Nanostructure Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environment%20Controlled%20Dewetting%20of%20Rh%E2%80%93Pd%20Bilayers:%20A%20Route%20for%20Core%E2%80%93Shell%20Nanostructure%20Synthesis&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Abrasonis,%20Gintautas&rft.date=2012-07-12&rft.volume=116&rft.issue=27&rft.spage=14401&rft.epage=14407&rft.pages=14401-14407&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp302908x&rft_dat=%3Cacs_cross%3Ec120938623%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true