Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy

The structure and organization of ions at vapor/solution interfaces have great implications for the reactivity and growth of atmospheric aerosols. Considering the ionic components of aqueous aerosols, sulfate species are one of the most prevalent due to high levels of SO2(g) emission to the atmosphe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-06, Vol.116 (24), p.13161-13168
Hauptverfasser: Jubb, Aaron M, Allen, Heather C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13168
container_issue 24
container_start_page 13161
container_title Journal of physical chemistry. C
container_volume 116
creator Jubb, Aaron M
Allen, Heather C
description The structure and organization of ions at vapor/solution interfaces have great implications for the reactivity and growth of atmospheric aerosols. Considering the ionic components of aqueous aerosols, sulfate species are one of the most prevalent due to high levels of SO2(g) emission to the atmosphere from biofuel burning and volcanic eruptions. Atmospheric SO2(g) can undergo direct gas phase oxidation or experience dissolution and subsequent oxidation to sulfate species within aqueous aerosols, where, depending on the pH level, sulfate may exist as SO4 2–, HSO4 –, or H2SO4. Here we probe the molecular environment experienced by the bisulfate anion (HSO4 –) at vapor/solution interfaces for H2SO4, Na2SO4, and MgSO4 solutions via vibrational sum frequency generation (VSFG) spectroscopy. VSFG is an inherently interface specific nonlinear optical spectroscopy and is a powerful tool for the study of interfacial structure and organization. Our VSFG results are compared to bisulfate behavior in bulk aqueous solution observed using Raman and infrared spectroscopies. The presence of Na+ and Mg2+ is observed to perturb HSO4 – anion hydration compared to H+ which manifests as a blue shift in the observed SO3 symmetric stretching mode frequency of HSO4 –. This perturbation is greatly exaggerated for interfacial HSO4 – anions residing within vapor/solution interfaces relative to bulk solution. Mg2+ ions are found to disrupt the net bisulfate population hydration within the vapor/solution interfaces tested, while Na+ ions only influence a subpopulation of the interfacial bisulfate distribution. This difference is attributed to the much greater propensity for aqueous solvation that Mg2+ exhibits compared to Na+. Our results are interpreted with a perspective toward understanding interfacial acid dissociation for the bisulfate anion and the role that this may play for tropospheric acidic aerosols.
doi_str_mv 10.1021/jp302585h
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp302585h</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d017153369</sourcerecordid><originalsourceid>FETCH-LOGICAL-a289t-5883736c5fc941064ec165eebb81fd386cafd7c93f5abedcdba8bc6c6b589ab03</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EEqUw8A-8MDCE2nGcOGMptFSqBFKANTpfbDVVmgQ7GfLvCbQqC9PdSd-9e_cIueXsgbOQz3atYKFUcntGJjwVYZBEUp6f-ii5JFfe7xiTgnExIdVj6fvKQmfok9kOhYOubGoKHZ2XbpY1Vf87r-vOOAtoPH1zjTYF1QP9LPUBh4pm_Z4unfnqTY0DXZnaHJWy1mDnGo9NO1yTCwuVNzfHOiUfy-f3xUuweV2tF_NNAKFKu0AqJRIRo7SYRpzFkUEeS2O0VtwWQsUItkgwFVbCaAULDUpjjLGWKgXNxJTcH3RxPOydsXnryj24Iecs_4kpP8U0sncHtgWPUFkHNZb-tBDGLJEsTf44QJ_vmt6NX_t_9L4BkQ92sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy</title><source>ACS Publications</source><creator>Jubb, Aaron M ; Allen, Heather C</creator><creatorcontrib>Jubb, Aaron M ; Allen, Heather C</creatorcontrib><description>The structure and organization of ions at vapor/solution interfaces have great implications for the reactivity and growth of atmospheric aerosols. Considering the ionic components of aqueous aerosols, sulfate species are one of the most prevalent due to high levels of SO2(g) emission to the atmosphere from biofuel burning and volcanic eruptions. Atmospheric SO2(g) can undergo direct gas phase oxidation or experience dissolution and subsequent oxidation to sulfate species within aqueous aerosols, where, depending on the pH level, sulfate may exist as SO4 2–, HSO4 –, or H2SO4. Here we probe the molecular environment experienced by the bisulfate anion (HSO4 –) at vapor/solution interfaces for H2SO4, Na2SO4, and MgSO4 solutions via vibrational sum frequency generation (VSFG) spectroscopy. VSFG is an inherently interface specific nonlinear optical spectroscopy and is a powerful tool for the study of interfacial structure and organization. Our VSFG results are compared to bisulfate behavior in bulk aqueous solution observed using Raman and infrared spectroscopies. The presence of Na+ and Mg2+ is observed to perturb HSO4 – anion hydration compared to H+ which manifests as a blue shift in the observed SO3 symmetric stretching mode frequency of HSO4 –. This perturbation is greatly exaggerated for interfacial HSO4 – anions residing within vapor/solution interfaces relative to bulk solution. Mg2+ ions are found to disrupt the net bisulfate population hydration within the vapor/solution interfaces tested, while Na+ ions only influence a subpopulation of the interfacial bisulfate distribution. This difference is attributed to the much greater propensity for aqueous solvation that Mg2+ exhibits compared to Na+. Our results are interpreted with a perspective toward understanding interfacial acid dissociation for the bisulfate anion and the role that this may play for tropospheric acidic aerosols.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp302585h</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Journal of physical chemistry. C, 2012-06, Vol.116 (24), p.13161-13168</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a289t-5883736c5fc941064ec165eebb81fd386cafd7c93f5abedcdba8bc6c6b589ab03</citedby><cites>FETCH-LOGICAL-a289t-5883736c5fc941064ec165eebb81fd386cafd7c93f5abedcdba8bc6c6b589ab03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp302585h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp302585h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26075097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jubb, Aaron M</creatorcontrib><creatorcontrib>Allen, Heather C</creatorcontrib><title>Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The structure and organization of ions at vapor/solution interfaces have great implications for the reactivity and growth of atmospheric aerosols. Considering the ionic components of aqueous aerosols, sulfate species are one of the most prevalent due to high levels of SO2(g) emission to the atmosphere from biofuel burning and volcanic eruptions. Atmospheric SO2(g) can undergo direct gas phase oxidation or experience dissolution and subsequent oxidation to sulfate species within aqueous aerosols, where, depending on the pH level, sulfate may exist as SO4 2–, HSO4 –, or H2SO4. Here we probe the molecular environment experienced by the bisulfate anion (HSO4 –) at vapor/solution interfaces for H2SO4, Na2SO4, and MgSO4 solutions via vibrational sum frequency generation (VSFG) spectroscopy. VSFG is an inherently interface specific nonlinear optical spectroscopy and is a powerful tool for the study of interfacial structure and organization. Our VSFG results are compared to bisulfate behavior in bulk aqueous solution observed using Raman and infrared spectroscopies. The presence of Na+ and Mg2+ is observed to perturb HSO4 – anion hydration compared to H+ which manifests as a blue shift in the observed SO3 symmetric stretching mode frequency of HSO4 –. This perturbation is greatly exaggerated for interfacial HSO4 – anions residing within vapor/solution interfaces relative to bulk solution. Mg2+ ions are found to disrupt the net bisulfate population hydration within the vapor/solution interfaces tested, while Na+ ions only influence a subpopulation of the interfacial bisulfate distribution. This difference is attributed to the much greater propensity for aqueous solvation that Mg2+ exhibits compared to Na+. Our results are interpreted with a perspective toward understanding interfacial acid dissociation for the bisulfate anion and the role that this may play for tropospheric acidic aerosols.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EEqUw8A-8MDCE2nGcOGMptFSqBFKANTpfbDVVmgQ7GfLvCbQqC9PdSd-9e_cIueXsgbOQz3atYKFUcntGJjwVYZBEUp6f-ii5JFfe7xiTgnExIdVj6fvKQmfok9kOhYOubGoKHZ2XbpY1Vf87r-vOOAtoPH1zjTYF1QP9LPUBh4pm_Z4unfnqTY0DXZnaHJWy1mDnGo9NO1yTCwuVNzfHOiUfy-f3xUuweV2tF_NNAKFKu0AqJRIRo7SYRpzFkUEeS2O0VtwWQsUItkgwFVbCaAULDUpjjLGWKgXNxJTcH3RxPOydsXnryj24Iecs_4kpP8U0sncHtgWPUFkHNZb-tBDGLJEsTf44QJ_vmt6NX_t_9L4BkQ92sg</recordid><startdate>20120621</startdate><enddate>20120621</enddate><creator>Jubb, Aaron M</creator><creator>Allen, Heather C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120621</creationdate><title>Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy</title><author>Jubb, Aaron M ; Allen, Heather C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a289t-5883736c5fc941064ec165eebb81fd386cafd7c93f5abedcdba8bc6c6b589ab03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jubb, Aaron M</creatorcontrib><creatorcontrib>Allen, Heather C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jubb, Aaron M</au><au>Allen, Heather C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-06-21</date><risdate>2012</risdate><volume>116</volume><issue>24</issue><spage>13161</spage><epage>13168</epage><pages>13161-13168</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The structure and organization of ions at vapor/solution interfaces have great implications for the reactivity and growth of atmospheric aerosols. Considering the ionic components of aqueous aerosols, sulfate species are one of the most prevalent due to high levels of SO2(g) emission to the atmosphere from biofuel burning and volcanic eruptions. Atmospheric SO2(g) can undergo direct gas phase oxidation or experience dissolution and subsequent oxidation to sulfate species within aqueous aerosols, where, depending on the pH level, sulfate may exist as SO4 2–, HSO4 –, or H2SO4. Here we probe the molecular environment experienced by the bisulfate anion (HSO4 –) at vapor/solution interfaces for H2SO4, Na2SO4, and MgSO4 solutions via vibrational sum frequency generation (VSFG) spectroscopy. VSFG is an inherently interface specific nonlinear optical spectroscopy and is a powerful tool for the study of interfacial structure and organization. Our VSFG results are compared to bisulfate behavior in bulk aqueous solution observed using Raman and infrared spectroscopies. The presence of Na+ and Mg2+ is observed to perturb HSO4 – anion hydration compared to H+ which manifests as a blue shift in the observed SO3 symmetric stretching mode frequency of HSO4 –. This perturbation is greatly exaggerated for interfacial HSO4 – anions residing within vapor/solution interfaces relative to bulk solution. Mg2+ ions are found to disrupt the net bisulfate population hydration within the vapor/solution interfaces tested, while Na+ ions only influence a subpopulation of the interfacial bisulfate distribution. This difference is attributed to the much greater propensity for aqueous solvation that Mg2+ exhibits compared to Na+. Our results are interpreted with a perspective toward understanding interfacial acid dissociation for the bisulfate anion and the role that this may play for tropospheric acidic aerosols.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp302585h</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-06, Vol.116 (24), p.13161-13168
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp302585h
source ACS Publications
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Surface physical chemistry
title Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bisulfate%20Dehydration%20at%20Air/Solution%20Interfaces%20Probed%20by%20Vibrational%20Sum%20Frequency%20Generation%20Spectroscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Jubb,%20Aaron%20M&rft.date=2012-06-21&rft.volume=116&rft.issue=24&rft.spage=13161&rft.epage=13168&rft.pages=13161-13168&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp302585h&rft_dat=%3Cacs_cross%3Ed017153369%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true