Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights
The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose...
Gespeichert in:
Veröffentlicht in: | J. Phys. Chem. C 2012-03, Vol.116 (8), p.5116-5120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5120 |
---|---|
container_issue | 8 |
container_start_page | 5116 |
container_title | J. Phys. Chem. C |
container_volume | 116 |
creator | Choudhary, Vinit Burnett, Russell I Vlachos, Dionisios G Sandler, Stanley I |
description | The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration. |
doi_str_mv | 10.1021/jp2113895 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2113895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d118969651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMoOKcPfoMgCO6hmrRN0_omU7fBwJf5arnkz9rRJiPJwH57MyrzRbhwL5zfOXAPQreUPFKS0qfdPqU0Kyt2hia0ytKE54ydn-6cX6Ir73eEsIzQbIK-XlUzSAehtQZbjRfdQVivcLCYJQ_LKNnvoVehGbqZPrg40GEwEr-Yo89uR_4ZbxrleisHA30r8Mr4dtsEf40uNHRe3fzuKfp8f9vMl8n6Y7Gav6wTyMo0JDLTueKSlCRVBWiihaalUFDloKECWYlCCyo5CBZlTlOQNAIEgOYlZzyborsx1_rQ1l60QYlGWGOUCDUlBSexlSmajZBw1nundL13bQ9uiER9bK8-tRfZ-5HdgxfQaQdGtP5kSBkvqrQs_jgQvt7ZgzPxzX_yfgBRkHxn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</title><source>ACS Publications</source><creator>Choudhary, Vinit ; Burnett, Russell I ; Vlachos, Dionisios G ; Sandler, Stanley I</creator><creatorcontrib>Choudhary, Vinit ; Burnett, Russell I ; Vlachos, Dionisios G ; Sandler, Stanley I ; Energy Frontier Research Centers (EFRC) ; Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><description>The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2113895</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Biological and medical sciences ; catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Fundamental and applied biological sciences. Psychology ; Molecular biophysics</subject><ispartof>J. Phys. Chem. C, 2012-03, Vol.116 (8), p.5116-5120</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</citedby><cites>FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2113895$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2113895$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25769286$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1067011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhary, Vinit</creatorcontrib><creatorcontrib>Burnett, Russell I</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><creatorcontrib>Sandler, Stanley I</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><title>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</title><title>J. Phys. Chem. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration.</description><subject>Biological and medical sciences</subject><subject>catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Molecular biophysics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkF9LwzAUxYMoOKcPfoMgCO6hmrRN0_omU7fBwJf5arnkz9rRJiPJwH57MyrzRbhwL5zfOXAPQreUPFKS0qfdPqU0Kyt2hia0ytKE54ydn-6cX6Ir73eEsIzQbIK-XlUzSAehtQZbjRfdQVivcLCYJQ_LKNnvoVehGbqZPrg40GEwEr-Yo89uR_4ZbxrleisHA30r8Mr4dtsEf40uNHRe3fzuKfp8f9vMl8n6Y7Gav6wTyMo0JDLTueKSlCRVBWiihaalUFDloKECWYlCCyo5CBZlTlOQNAIEgOYlZzyborsx1_rQ1l60QYlGWGOUCDUlBSexlSmajZBw1nundL13bQ9uiER9bK8-tRfZ-5HdgxfQaQdGtP5kSBkvqrQs_jgQvt7ZgzPxzX_yfgBRkHxn</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Choudhary, Vinit</creator><creator>Burnett, Russell I</creator><creator>Vlachos, Dionisios G</creator><creator>Sandler, Stanley I</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120301</creationdate><title>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</title><author>Choudhary, Vinit ; Burnett, Russell I ; Vlachos, Dionisios G ; Sandler, Stanley I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Molecular biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, Vinit</creatorcontrib><creatorcontrib>Burnett, Russell I</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><creatorcontrib>Sandler, Stanley I</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Phys. Chem. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, Vinit</au><au>Burnett, Russell I</au><au>Vlachos, Dionisios G</au><au>Sandler, Stanley I</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Catalysis Center for Energy Innovation (CCEI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</atitle><jtitle>J. Phys. Chem. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>116</volume><issue>8</issue><spage>5116</spage><epage>5120</epage><pages>5116-5120</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp2113895</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | J. Phys. Chem. C, 2012-03, Vol.116 (8), p.5116-5120 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp2113895 |
source | ACS Publications |
subjects | Biological and medical sciences catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Fundamental and applied biological sciences. Psychology Molecular biophysics |
title | Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydration%20of%20Glucose%20to%205-(Hydroxymethyl)furfural%20and%20Anhydroglucose:%20Thermodynamic%20Insights&rft.jtitle=J.%20Phys.%20Chem.%20C&rft.au=Choudhary,%20Vinit&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-03-01&rft.volume=116&rft.issue=8&rft.spage=5116&rft.epage=5120&rft.pages=5116-5120&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2113895&rft_dat=%3Cacs_osti_%3Ed118969651%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |