Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights

The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Phys. Chem. C 2012-03, Vol.116 (8), p.5116-5120
Hauptverfasser: Choudhary, Vinit, Burnett, Russell I, Vlachos, Dionisios G, Sandler, Stanley I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5120
container_issue 8
container_start_page 5116
container_title J. Phys. Chem. C
container_volume 116
creator Choudhary, Vinit
Burnett, Russell I
Vlachos, Dionisios G
Sandler, Stanley I
description The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)­furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration.
doi_str_mv 10.1021/jp2113895
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2113895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d118969651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMoOKcPfoMgCO6hmrRN0_omU7fBwJf5arnkz9rRJiPJwH57MyrzRbhwL5zfOXAPQreUPFKS0qfdPqU0Kyt2hia0ytKE54ydn-6cX6Ir73eEsIzQbIK-XlUzSAehtQZbjRfdQVivcLCYJQ_LKNnvoVehGbqZPrg40GEwEr-Yo89uR_4ZbxrleisHA30r8Mr4dtsEf40uNHRe3fzuKfp8f9vMl8n6Y7Gav6wTyMo0JDLTueKSlCRVBWiihaalUFDloKECWYlCCyo5CBZlTlOQNAIEgOYlZzyborsx1_rQ1l60QYlGWGOUCDUlBSexlSmajZBw1nundL13bQ9uiER9bK8-tRfZ-5HdgxfQaQdGtP5kSBkvqrQs_jgQvt7ZgzPxzX_yfgBRkHxn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</title><source>ACS Publications</source><creator>Choudhary, Vinit ; Burnett, Russell I ; Vlachos, Dionisios G ; Sandler, Stanley I</creator><creatorcontrib>Choudhary, Vinit ; Burnett, Russell I ; Vlachos, Dionisios G ; Sandler, Stanley I ; Energy Frontier Research Centers (EFRC) ; Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><description>The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)­furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2113895</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Biological and medical sciences ; catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Fundamental and applied biological sciences. Psychology ; Molecular biophysics</subject><ispartof>J. Phys. Chem. C, 2012-03, Vol.116 (8), p.5116-5120</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</citedby><cites>FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2113895$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2113895$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25769286$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1067011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Choudhary, Vinit</creatorcontrib><creatorcontrib>Burnett, Russell I</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><creatorcontrib>Sandler, Stanley I</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><title>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</title><title>J. Phys. Chem. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)­furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration.</description><subject>Biological and medical sciences</subject><subject>catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Molecular biophysics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkF9LwzAUxYMoOKcPfoMgCO6hmrRN0_omU7fBwJf5arnkz9rRJiPJwH57MyrzRbhwL5zfOXAPQreUPFKS0qfdPqU0Kyt2hia0ytKE54ydn-6cX6Ir73eEsIzQbIK-XlUzSAehtQZbjRfdQVivcLCYJQ_LKNnvoVehGbqZPrg40GEwEr-Yo89uR_4ZbxrleisHA30r8Mr4dtsEf40uNHRe3fzuKfp8f9vMl8n6Y7Gav6wTyMo0JDLTueKSlCRVBWiihaalUFDloKECWYlCCyo5CBZlTlOQNAIEgOYlZzyborsx1_rQ1l60QYlGWGOUCDUlBSexlSmajZBw1nundL13bQ9uiER9bK8-tRfZ-5HdgxfQaQdGtP5kSBkvqrQs_jgQvt7ZgzPxzX_yfgBRkHxn</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Choudhary, Vinit</creator><creator>Burnett, Russell I</creator><creator>Vlachos, Dionisios G</creator><creator>Sandler, Stanley I</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120301</creationdate><title>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</title><author>Choudhary, Vinit ; Burnett, Russell I ; Vlachos, Dionisios G ; Sandler, Stanley I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-d3f4e7d0802e6af0fcf18cea94afa9ad9c6fc1d7ac56af712ad118c0aa1487573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Molecular biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, Vinit</creatorcontrib><creatorcontrib>Burnett, Russell I</creatorcontrib><creatorcontrib>Vlachos, Dionisios G</creatorcontrib><creatorcontrib>Sandler, Stanley I</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Catalysis Center for Energy Innovation (CCEI)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J. Phys. Chem. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, Vinit</au><au>Burnett, Russell I</au><au>Vlachos, Dionisios G</au><au>Sandler, Stanley I</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Catalysis Center for Energy Innovation (CCEI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights</atitle><jtitle>J. Phys. Chem. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>116</volume><issue>8</issue><spage>5116</spage><epage>5120</epage><pages>5116-5120</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The G4 ab initio method was used in combination with the COSMO-SAC solvation model to predict the reaction free energies (ΔG) of glucose dehydration reactions in mixtures of water and dimethyl sulfoxide (DMSO). Experiments were also conducted to estimate the ΔG values for the dehydration of glucose to anhydroglucofuranose and levoglucosan. The predicted ΔG values were found to be in quantitative agreement with the experimental values. The calculations show that hexose dehydration to 5-(hydroxymethyl)­furfural (HMF) is an irreversible reaction, whereas glucose dehydration to anhydroglucose could be reversible depending upon the reaction conditions and choice of solvent. The calculations demonstrate the effect of a small amount of water in DMSO; this water can even be produced while dehydrating a highly concentrated solution of glucose and can affect glucose dehydration.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp2113895</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof J. Phys. Chem. C, 2012-03, Vol.116 (8), p.5116-5120
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp2113895
source ACS Publications
subjects Biological and medical sciences
catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Fundamental and applied biological sciences. Psychology
Molecular biophysics
title Dehydration of Glucose to 5-(Hydroxymethyl)furfural and Anhydroglucose: Thermodynamic Insights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A41%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydration%20of%20Glucose%20to%205-(Hydroxymethyl)furfural%20and%20Anhydroglucose:%20Thermodynamic%20Insights&rft.jtitle=J.%20Phys.%20Chem.%20C&rft.au=Choudhary,%20Vinit&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-03-01&rft.volume=116&rft.issue=8&rft.spage=5116&rft.epage=5120&rft.pages=5116-5120&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2113895&rft_dat=%3Cacs_osti_%3Ed118969651%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true