Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes
Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-01, Vol.116 (1), p.1232-1243 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1243 |
---|---|
container_issue | 1 |
container_start_page | 1232 |
container_title | Journal of physical chemistry. C |
container_volume | 116 |
creator | Climent, Victor Zhang, Jingdong Friis, Esben Peter Østergaard, Lars Henrik Ulstrup, Jens |
description | Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study. |
doi_str_mv | 10.1021/jp2086285 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2086285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c221710585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</originalsourceid><addsrcrecordid>eNptkNtKAzEQhhdRsB4ufIPcCHqxmuPu9rLWI1QKtnq7zKaJpKRJSXbBfS5f0FRtvREGZpj5_4-ZybIzgq8IpuR6uaa4Kmgl9rIBGTKal1yI_V3Ny8PsKMYlxoJhwgbZ55u3LaxWqg09ArdAM-PercqfvVWyswoZl1pth2YSnEszNO-cU3ZTPRsZfJR-3SOv0QSkhKjiN-XGWBO6JpmnH2aR2hvOXUK2wUtowfatkejW-I_-XTn0ohadbI13KMWouyCEXG43GYc-JsPWvVDxJDvQYKM6_c3H2ev93Xz8mE-mD0_j0SQHRnmbg6AVlFJxUVLMBFW80bwoBFOkKblsGt5IXTJOCRPVUEuhCwCquWjSrBgCO84uf7ibM2NQul4Hs4LQ1wTXm2_Xu28n7fmPdg1RgtUBnDRxZ6CCV8OyxH86kLFe-i64dME_vC_cVo40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</title><source>ACS Publications</source><creator>Climent, Victor ; Zhang, Jingdong ; Friis, Esben Peter ; Østergaard, Lars Henrik ; Ulstrup, Jens</creator><creatorcontrib>Climent, Victor ; Zhang, Jingdong ; Friis, Esben Peter ; Østergaard, Lars Henrik ; Ulstrup, Jens</creatorcontrib><description>Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2086285</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter ; Catalysis ; Catalysts: preparations and properties ; Catalytic reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of physical chemistry. C, 2012-01, Vol.116 (1), p.1232-1243</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</citedby><cites>FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2086285$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2086285$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25489770$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Climent, Victor</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Friis, Esben Peter</creatorcontrib><creatorcontrib>Østergaard, Lars Henrik</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><title>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study.</description><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Catalytic reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkNtKAzEQhhdRsB4ufIPcCHqxmuPu9rLWI1QKtnq7zKaJpKRJSXbBfS5f0FRtvREGZpj5_4-ZybIzgq8IpuR6uaa4Kmgl9rIBGTKal1yI_V3Ny8PsKMYlxoJhwgbZ55u3LaxWqg09ArdAM-PercqfvVWyswoZl1pth2YSnEszNO-cU3ZTPRsZfJR-3SOv0QSkhKjiN-XGWBO6JpmnH2aR2hvOXUK2wUtowfatkejW-I_-XTn0ohadbI13KMWouyCEXG43GYc-JsPWvVDxJDvQYKM6_c3H2ev93Xz8mE-mD0_j0SQHRnmbg6AVlFJxUVLMBFW80bwoBFOkKblsGt5IXTJOCRPVUEuhCwCquWjSrBgCO84uf7ibM2NQul4Hs4LQ1wTXm2_Xu28n7fmPdg1RgtUBnDRxZ6CCV8OyxH86kLFe-i64dME_vC_cVo40</recordid><startdate>20120112</startdate><enddate>20120112</enddate><creator>Climent, Victor</creator><creator>Zhang, Jingdong</creator><creator>Friis, Esben Peter</creator><creator>Østergaard, Lars Henrik</creator><creator>Ulstrup, Jens</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120112</creationdate><title>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</title><author>Climent, Victor ; Zhang, Jingdong ; Friis, Esben Peter ; Østergaard, Lars Henrik ; Ulstrup, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>C: Electron Transport, Optical and Electronic Devices, Hard Matter</topic><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Catalytic reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Climent, Victor</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Friis, Esben Peter</creatorcontrib><creatorcontrib>Østergaard, Lars Henrik</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Climent, Victor</au><au>Zhang, Jingdong</au><au>Friis, Esben Peter</au><au>Østergaard, Lars Henrik</au><au>Ulstrup, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-01-12</date><risdate>2012</risdate><volume>116</volume><issue>1</issue><spage>1232</spage><epage>1243</epage><pages>1232-1243</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp2086285</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2012-01, Vol.116 (1), p.1232-1243 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp2086285 |
source | ACS Publications |
subjects | C: Electron Transport, Optical and Electronic Devices, Hard Matter Catalysis Catalysts: preparations and properties Catalytic reactions Chemistry Exact sciences and technology General and physical chemistry Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltammetry%20and%20Single-Molecule%20in%20Situ%20Scanning%20Tunneling%20Microscopy%20of%20Laccases%20and%20Bilirubin%20Oxidase%20in%20Electrocatalytic%20Dioxygen%20Reduction%20on%20Au(111)%20Single-Crystal%20Electrodes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Climent,%20Victor&rft.date=2012-01-12&rft.volume=116&rft.issue=1&rft.spage=1232&rft.epage=1243&rft.pages=1232-1243&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2086285&rft_dat=%3Cacs_cross%3Ec221710585%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |