Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes

Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-01, Vol.116 (1), p.1232-1243
Hauptverfasser: Climent, Victor, Zhang, Jingdong, Friis, Esben Peter, Østergaard, Lars Henrik, Ulstrup, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1243
container_issue 1
container_start_page 1232
container_title Journal of physical chemistry. C
container_volume 116
creator Climent, Victor
Zhang, Jingdong
Friis, Esben Peter
Østergaard, Lars Henrik
Ulstrup, Jens
description Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study.
doi_str_mv 10.1021/jp2086285
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2086285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c221710585</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</originalsourceid><addsrcrecordid>eNptkNtKAzEQhhdRsB4ufIPcCHqxmuPu9rLWI1QKtnq7zKaJpKRJSXbBfS5f0FRtvREGZpj5_4-ZybIzgq8IpuR6uaa4Kmgl9rIBGTKal1yI_V3Ny8PsKMYlxoJhwgbZ55u3LaxWqg09ArdAM-PercqfvVWyswoZl1pth2YSnEszNO-cU3ZTPRsZfJR-3SOv0QSkhKjiN-XGWBO6JpmnH2aR2hvOXUK2wUtowfatkejW-I_-XTn0ohadbI13KMWouyCEXG43GYc-JsPWvVDxJDvQYKM6_c3H2ev93Xz8mE-mD0_j0SQHRnmbg6AVlFJxUVLMBFW80bwoBFOkKblsGt5IXTJOCRPVUEuhCwCquWjSrBgCO84uf7ibM2NQul4Hs4LQ1wTXm2_Xu28n7fmPdg1RgtUBnDRxZ6CCV8OyxH86kLFe-i64dME_vC_cVo40</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</title><source>ACS Publications</source><creator>Climent, Victor ; Zhang, Jingdong ; Friis, Esben Peter ; Østergaard, Lars Henrik ; Ulstrup, Jens</creator><creatorcontrib>Climent, Victor ; Zhang, Jingdong ; Friis, Esben Peter ; Østergaard, Lars Henrik ; Ulstrup, Jens</creatorcontrib><description>Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2086285</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter ; Catalysis ; Catalysts: preparations and properties ; Catalytic reactions ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Journal of physical chemistry. C, 2012-01, Vol.116 (1), p.1232-1243</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</citedby><cites>FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2086285$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2086285$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25489770$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Climent, Victor</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Friis, Esben Peter</creatorcontrib><creatorcontrib>Østergaard, Lars Henrik</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><title>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study.</description><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><subject>Catalysis</subject><subject>Catalysts: preparations and properties</subject><subject>Catalytic reactions</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkNtKAzEQhhdRsB4ufIPcCHqxmuPu9rLWI1QKtnq7zKaJpKRJSXbBfS5f0FRtvREGZpj5_4-ZybIzgq8IpuR6uaa4Kmgl9rIBGTKal1yI_V3Ny8PsKMYlxoJhwgbZ55u3LaxWqg09ArdAM-PercqfvVWyswoZl1pth2YSnEszNO-cU3ZTPRsZfJR-3SOv0QSkhKjiN-XGWBO6JpmnH2aR2hvOXUK2wUtowfatkejW-I_-XTn0ohadbI13KMWouyCEXG43GYc-JsPWvVDxJDvQYKM6_c3H2ev93Xz8mE-mD0_j0SQHRnmbg6AVlFJxUVLMBFW80bwoBFOkKblsGt5IXTJOCRPVUEuhCwCquWjSrBgCO84uf7ibM2NQul4Hs4LQ1wTXm2_Xu28n7fmPdg1RgtUBnDRxZ6CCV8OyxH86kLFe-i64dME_vC_cVo40</recordid><startdate>20120112</startdate><enddate>20120112</enddate><creator>Climent, Victor</creator><creator>Zhang, Jingdong</creator><creator>Friis, Esben Peter</creator><creator>Østergaard, Lars Henrik</creator><creator>Ulstrup, Jens</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120112</creationdate><title>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</title><author>Climent, Victor ; Zhang, Jingdong ; Friis, Esben Peter ; Østergaard, Lars Henrik ; Ulstrup, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-a528a7ce45720352e4bf46653e1b74cbb4bcf734213589fc5f6aa2f45bcbb69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>C: Electron Transport, Optical and Electronic Devices, Hard Matter</topic><topic>Catalysis</topic><topic>Catalysts: preparations and properties</topic><topic>Catalytic reactions</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Climent, Victor</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Friis, Esben Peter</creatorcontrib><creatorcontrib>Østergaard, Lars Henrik</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Climent, Victor</au><au>Zhang, Jingdong</au><au>Friis, Esben Peter</au><au>Østergaard, Lars Henrik</au><au>Ulstrup, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-01-12</date><risdate>2012</risdate><volume>116</volume><issue>1</issue><spage>1232</spage><epage>1243</epage><pages>1232-1243</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Laccases (E.C. 1.10.3.2) are multicopper oxidases catalytically active in the oxidation of diphenolics and related compounds by molecular dioxygen. The laccases contain a single-copper type I center and a trinuclear cluster of a single-copper type II and a dinuclear type III center. The oxidation of four equivalents of substrate near the type I copper and the sequential transfer of electrons to the trinuclear cluster are coupled with four-electron reduction of O2 to H2O at the latter site. Extensive efforts have been given to kinetic and structural characterization of numerous laccases to elucidate the catalytic mechanism, where laccase (sub)monolayer voltammetry has been a core approach. In this report, we address voltammetry and electrocatalysis of O2 reduction of (sub)monolayers of several laccases in new ways. These are based on the use of single-crystal, atomically planar bare Au(111)-electrode surfaces or surfaces modified by thiol-based self-assembled molecular monolayers. These well-defined surfaces enable introducing electrochemical scanning tunneling microscopy directly in aqueous biological media in which the enzymes are operative (in situ STM), to the level of resolution of the single enzyme molecule in electrocatalytic action. Enzyme-electrode electronic contact and intramolecular electron transfer triggered by the electrode potential or by O2–substrate binding to the enzyme, followed at the single-molecule level, are the most important observations of this study.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp2086285</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-01, Vol.116 (1), p.1232-1243
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp2086285
source ACS Publications
subjects C: Electron Transport, Optical and Electronic Devices, Hard Matter
Catalysis
Catalysts: preparations and properties
Catalytic reactions
Chemistry
Exact sciences and technology
General and physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltammetry%20and%20Single-Molecule%20in%20Situ%20Scanning%20Tunneling%20Microscopy%20of%20Laccases%20and%20Bilirubin%20Oxidase%20in%20Electrocatalytic%20Dioxygen%20Reduction%20on%20Au(111)%20Single-Crystal%20Electrodes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Climent,%20Victor&rft.date=2012-01-12&rft.volume=116&rft.issue=1&rft.spage=1232&rft.epage=1243&rft.pages=1232-1243&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2086285&rft_dat=%3Cacs_cross%3Ec221710585%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true