Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA
The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significant...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2011-11, Vol.115 (45), p.22547-22556 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22556 |
---|---|
container_issue | 45 |
container_start_page | 22547 |
container_title | Journal of physical chemistry. C |
container_volume | 115 |
creator | Liu, Haiying Li, Genqin Ai, Hongqi Li, Jilai Bu, Yuxiang |
description | The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires. |
doi_str_mv | 10.1021/jp2070198 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2070198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a2047466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</originalsourceid><addsrcrecordid>eNptkDtrwzAUhUVpoWnaof9AS4cObvWwLHlMXfcB6WPIWowsS0QmkYykFPLvY5OSqdO5fHwcLgeAW4weMCL4sR8I4giX4gzMcElJxnPGzk93zi_BVYw9QowiTGfgp95olYJ3VsHaraVTeqtdgrUxI4fewMoPgw7ww3fWWCWT9W7CTzJq-C1tiHAEaa1H0XU7leyvTfvJeP5cXIMLIzdR3_zlHKxe6lX1li2_Xt-rxTKTlLCUtYgLIgxjpMCUI4aoxCLHgvBWMUpyKbTqitaUsiVSd0aPgRgXucKqLASdg_tjrQo-xqBNMwS7lWHfYNRMszSnWUb37uhKFZve74IbH_vHOwAf3WAl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</title><source>ACS Publications</source><creator>Liu, Haiying ; Li, Genqin ; Ai, Hongqi ; Li, Jilai ; Bu, Yuxiang</creator><creatorcontrib>Liu, Haiying ; Li, Genqin ; Ai, Hongqi ; Li, Jilai ; Bu, Yuxiang</creatorcontrib><description>The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2070198</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><ispartof>Journal of physical chemistry. C, 2011-11, Vol.115 (45), p.22547-22556</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</citedby><cites>FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2070198$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2070198$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Liu, Haiying</creatorcontrib><creatorcontrib>Li, Genqin</creatorcontrib><creatorcontrib>Ai, Hongqi</creatorcontrib><creatorcontrib>Li, Jilai</creatorcontrib><creatorcontrib>Bu, Yuxiang</creatorcontrib><title>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires.</description><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkDtrwzAUhUVpoWnaof9AS4cObvWwLHlMXfcB6WPIWowsS0QmkYykFPLvY5OSqdO5fHwcLgeAW4weMCL4sR8I4giX4gzMcElJxnPGzk93zi_BVYw9QowiTGfgp95olYJ3VsHaraVTeqtdgrUxI4fewMoPgw7ww3fWWCWT9W7CTzJq-C1tiHAEaa1H0XU7leyvTfvJeP5cXIMLIzdR3_zlHKxe6lX1li2_Xt-rxTKTlLCUtYgLIgxjpMCUI4aoxCLHgvBWMUpyKbTqitaUsiVSd0aPgRgXucKqLASdg_tjrQo-xqBNMwS7lWHfYNRMszSnWUb37uhKFZve74IbH_vHOwAf3WAl</recordid><startdate>20111117</startdate><enddate>20111117</enddate><creator>Liu, Haiying</creator><creator>Li, Genqin</creator><creator>Ai, Hongqi</creator><creator>Li, Jilai</creator><creator>Bu, Yuxiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111117</creationdate><title>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</title><author>Liu, Haiying ; Li, Genqin ; Ai, Hongqi ; Li, Jilai ; Bu, Yuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Electron Transport, Optical and Electronic Devices, Hard Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haiying</creatorcontrib><creatorcontrib>Li, Genqin</creatorcontrib><creatorcontrib>Ai, Hongqi</creatorcontrib><creatorcontrib>Li, Jilai</creatorcontrib><creatorcontrib>Bu, Yuxiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haiying</au><au>Li, Genqin</au><au>Ai, Hongqi</au><au>Li, Jilai</au><au>Bu, Yuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-11-17</date><risdate>2011</risdate><volume>115</volume><issue>45</issue><spage>22547</spage><epage>22556</epage><pages>22547-22556</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp2070198</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2011-11, Vol.115 (45), p.22547-22556 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp2070198 |
source | ACS Publications |
subjects | C: Electron Transport, Optical and Electronic Devices, Hard Matter |
title | Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Enhancement%20Effect%20of%20Copper%20Modification%20of%20Base%20Pairs%20on%20the%20Conductivity%20of%20DNA&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Liu,%20Haiying&rft.date=2011-11-17&rft.volume=115&rft.issue=45&rft.spage=22547&rft.epage=22556&rft.pages=22547-22556&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2070198&rft_dat=%3Cacs_cross%3Ea2047466%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |