Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA

The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-11, Vol.115 (45), p.22547-22556
Hauptverfasser: Liu, Haiying, Li, Genqin, Ai, Hongqi, Li, Jilai, Bu, Yuxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22556
container_issue 45
container_start_page 22547
container_title Journal of physical chemistry. C
container_volume 115
creator Liu, Haiying
Li, Genqin
Ai, Hongqi
Li, Jilai
Bu, Yuxiang
description The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires.
doi_str_mv 10.1021/jp2070198
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2070198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a2047466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</originalsourceid><addsrcrecordid>eNptkDtrwzAUhUVpoWnaof9AS4cObvWwLHlMXfcB6WPIWowsS0QmkYykFPLvY5OSqdO5fHwcLgeAW4weMCL4sR8I4giX4gzMcElJxnPGzk93zi_BVYw9QowiTGfgp95olYJ3VsHaraVTeqtdgrUxI4fewMoPgw7ww3fWWCWT9W7CTzJq-C1tiHAEaa1H0XU7leyvTfvJeP5cXIMLIzdR3_zlHKxe6lX1li2_Xt-rxTKTlLCUtYgLIgxjpMCUI4aoxCLHgvBWMUpyKbTqitaUsiVSd0aPgRgXucKqLASdg_tjrQo-xqBNMwS7lWHfYNRMszSnWUb37uhKFZve74IbH_vHOwAf3WAl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</title><source>ACS Publications</source><creator>Liu, Haiying ; Li, Genqin ; Ai, Hongqi ; Li, Jilai ; Bu, Yuxiang</creator><creatorcontrib>Liu, Haiying ; Li, Genqin ; Ai, Hongqi ; Li, Jilai ; Bu, Yuxiang</creatorcontrib><description>The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2070198</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><ispartof>Journal of physical chemistry. C, 2011-11, Vol.115 (45), p.22547-22556</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</citedby><cites>FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2070198$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2070198$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Liu, Haiying</creatorcontrib><creatorcontrib>Li, Genqin</creatorcontrib><creatorcontrib>Ai, Hongqi</creatorcontrib><creatorcontrib>Li, Jilai</creatorcontrib><creatorcontrib>Bu, Yuxiang</creatorcontrib><title>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires.</description><subject>C: Electron Transport, Optical and Electronic Devices, Hard Matter</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptkDtrwzAUhUVpoWnaof9AS4cObvWwLHlMXfcB6WPIWowsS0QmkYykFPLvY5OSqdO5fHwcLgeAW4weMCL4sR8I4giX4gzMcElJxnPGzk93zi_BVYw9QowiTGfgp95olYJ3VsHaraVTeqtdgrUxI4fewMoPgw7ww3fWWCWT9W7CTzJq-C1tiHAEaa1H0XU7leyvTfvJeP5cXIMLIzdR3_zlHKxe6lX1li2_Xt-rxTKTlLCUtYgLIgxjpMCUI4aoxCLHgvBWMUpyKbTqitaUsiVSd0aPgRgXucKqLASdg_tjrQo-xqBNMwS7lWHfYNRMszSnWUb37uhKFZve74IbH_vHOwAf3WAl</recordid><startdate>20111117</startdate><enddate>20111117</enddate><creator>Liu, Haiying</creator><creator>Li, Genqin</creator><creator>Ai, Hongqi</creator><creator>Li, Jilai</creator><creator>Bu, Yuxiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111117</creationdate><title>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</title><author>Liu, Haiying ; Li, Genqin ; Ai, Hongqi ; Li, Jilai ; Bu, Yuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-b07828f55261370503a1841827bc5324a8ecd6bf9ab2aedfeb2a05784c1c9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Electron Transport, Optical and Electronic Devices, Hard Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haiying</creatorcontrib><creatorcontrib>Li, Genqin</creatorcontrib><creatorcontrib>Ai, Hongqi</creatorcontrib><creatorcontrib>Li, Jilai</creatorcontrib><creatorcontrib>Bu, Yuxiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haiying</au><au>Li, Genqin</au><au>Ai, Hongqi</au><au>Li, Jilai</au><au>Bu, Yuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-11-17</date><risdate>2011</risdate><volume>115</volume><issue>45</issue><spage>22547</spage><epage>22556</epage><pages>22547-22556</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The effect of the new designed multicopper modification of base pairs on the conductivity of DNA was investigated by the nonequilibrium Green’s function method combined with density functional theory. Electronic transport calculations revealed that the equi-number H-by-Cu replacement can significantly enhance the conductivity of DNA from two aspects: transverse base-to-base communication along the hydrogen-bond direction and longitudinal transport along the DNA duplex. Furthermore, the enhancement effect on the longitudinal direction is more notable than that on the transverse. A tunneling mechanism is suggested for the short DNA segments. The decay factor of conductance in Cu-DNA decreases by half compared with the native DNA, thus making it more promising for constructing nanowires. In addition, Cu-DNA may prefer electron migration to hole transport with the lengthening of DNA segments. This work will shed some light on the design of promising DNA-based molecular wires.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp2070198</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2011-11, Vol.115 (45), p.22547-22556
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp2070198
source ACS Publications
subjects C: Electron Transport, Optical and Electronic Devices, Hard Matter
title Electronic Enhancement Effect of Copper Modification of Base Pairs on the Conductivity of DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Enhancement%20Effect%20of%20Copper%20Modification%20of%20Base%20Pairs%20on%20the%20Conductivity%20of%20DNA&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Liu,%20Haiying&rft.date=2011-11-17&rft.volume=115&rft.issue=45&rft.spage=22547&rft.epage=22556&rft.pages=22547-22556&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2070198&rft_dat=%3Cacs_cross%3Ea2047466%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true