Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries

Germanium nanoparticles (Ge-NPs) were synthesized through a one-step chemical vapor deposition process and were included in a hybrid free-standing single-wall carbon nanotube (SWCNT) electrode. The Ge-NPs were characterized through scanning electron microscopy and Raman spectroscopy to confirm the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-11, Vol.115 (45), p.22609-22614
Hauptverfasser: DiLeo, Roberta A, Frisco, Sarah, Ganter, Matthew J, Rogers, Reginald E, Raffaelle, Ryne P, Landi, Brian J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22614
container_issue 45
container_start_page 22609
container_title Journal of physical chemistry. C
container_volume 115
creator DiLeo, Roberta A
Frisco, Sarah
Ganter, Matthew J
Rogers, Reginald E
Raffaelle, Ryne P
Landi, Brian J
description Germanium nanoparticles (Ge-NPs) were synthesized through a one-step chemical vapor deposition process and were included in a hybrid free-standing single-wall carbon nanotube (SWCNT) electrode. The Ge-NPs were characterized through scanning electron microscopy and Raman spectroscopy to confirm the presence of crystalline nanoparticles with average diameters of 60 nm. Electrochemical testing of the Ge-NPs shows high reversible lithium ion capacity up to 900 mAh g–1 and a Coulombic efficiency of 96% on the first cycle, with capacities realizing 1000 mAh g–1 and a Coulombic efficiency of 98% on the second cycle. The use of SWCNTs to provide a stable nanoscale electrical network to support Ge-NPs resulted in a hybrid three-dimensional free-standing electrode, which is an attractive alternative to the conventional composite-current collector approach. The Ge-NP:SWCNT hybrid electrode with thin film titanium contacts produced electrode capacities of 983 mAh g–1 versus Li/Li+ up to 3 V. The higher anode capacity for the hybrid is maintained at modest cycling rates up to 1C. The pairing of the hybrid electrode with a commerical LiFePO4 cathode showed excellent performance with anode capacities of 800 mAh g–1 over a 1 V discharge range. Even at higher discharge rates, up to 1C, the anode energy density changes by only 8.5%. Thus, this demonstrates the first full battery comprising a free-standing Ge-based anode with a high power cathode exhibiting improved energy and power density.
doi_str_mv 10.1021/jp205992w
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp205992w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i36429853</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-98c5f7331ce06c676e1cd144037f6a03f12baacb78189052b3b2a1eefa2b65593</originalsourceid><addsrcrecordid>eNpt0L1OwzAUBWALgUQpDLyBFwaGgH_ipBlLRX-kCoaCGKNr5xocpUllu0LdeAfekCchpYiJ6d7h09HRIeSSsxvOBL-tN4KpohDvR2TACymSPFXq-O9P81NyFkLNmJKMywGp5zvtXUVn6NfQuu2aPkDbbcBHZxr8-vhcufa1weQFmoZOwOuu_RFxq5FOPWKyitBWPaLjtqswUNt5unTxbZ-16PUdxIjeYTgnJxaagBe_d0iep_dPk3myfJwtJuNlAlKomBQjo2wuJTfIMpPlGXJT8TRlMrcZMGm50ABG5yM-KpgSWmoBHNGC0JlShRyS60Ou8V0IHm258W4NfldyVu5HKv9G6u3VwYIJZd1tfds3-8d9A6q2aAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries</title><source>ACS Publications</source><creator>DiLeo, Roberta A ; Frisco, Sarah ; Ganter, Matthew J ; Rogers, Reginald E ; Raffaelle, Ryne P ; Landi, Brian J</creator><creatorcontrib>DiLeo, Roberta A ; Frisco, Sarah ; Ganter, Matthew J ; Rogers, Reginald E ; Raffaelle, Ryne P ; Landi, Brian J</creatorcontrib><description>Germanium nanoparticles (Ge-NPs) were synthesized through a one-step chemical vapor deposition process and were included in a hybrid free-standing single-wall carbon nanotube (SWCNT) electrode. The Ge-NPs were characterized through scanning electron microscopy and Raman spectroscopy to confirm the presence of crystalline nanoparticles with average diameters of 60 nm. Electrochemical testing of the Ge-NPs shows high reversible lithium ion capacity up to 900 mAh g–1 and a Coulombic efficiency of 96% on the first cycle, with capacities realizing 1000 mAh g–1 and a Coulombic efficiency of 98% on the second cycle. The use of SWCNTs to provide a stable nanoscale electrical network to support Ge-NPs resulted in a hybrid three-dimensional free-standing electrode, which is an attractive alternative to the conventional composite-current collector approach. The Ge-NP:SWCNT hybrid electrode with thin film titanium contacts produced electrode capacities of 983 mAh g–1 versus Li/Li+ up to 3 V. The higher anode capacity for the hybrid is maintained at modest cycling rates up to 1C. The pairing of the hybrid electrode with a commerical LiFePO4 cathode showed excellent performance with anode capacities of 800 mAh g–1 over a 1 V discharge range. Even at higher discharge rates, up to 1C, the anode energy density changes by only 8.5%. Thus, this demonstrates the first full battery comprising a free-standing Ge-based anode with a high power cathode exhibiting improved energy and power density.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp205992w</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2011-11, Vol.115 (45), p.22609-22614</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-98c5f7331ce06c676e1cd144037f6a03f12baacb78189052b3b2a1eefa2b65593</citedby><cites>FETCH-LOGICAL-a325t-98c5f7331ce06c676e1cd144037f6a03f12baacb78189052b3b2a1eefa2b65593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp205992w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp205992w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>DiLeo, Roberta A</creatorcontrib><creatorcontrib>Frisco, Sarah</creatorcontrib><creatorcontrib>Ganter, Matthew J</creatorcontrib><creatorcontrib>Rogers, Reginald E</creatorcontrib><creatorcontrib>Raffaelle, Ryne P</creatorcontrib><creatorcontrib>Landi, Brian J</creatorcontrib><title>Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Germanium nanoparticles (Ge-NPs) were synthesized through a one-step chemical vapor deposition process and were included in a hybrid free-standing single-wall carbon nanotube (SWCNT) electrode. The Ge-NPs were characterized through scanning electron microscopy and Raman spectroscopy to confirm the presence of crystalline nanoparticles with average diameters of 60 nm. Electrochemical testing of the Ge-NPs shows high reversible lithium ion capacity up to 900 mAh g–1 and a Coulombic efficiency of 96% on the first cycle, with capacities realizing 1000 mAh g–1 and a Coulombic efficiency of 98% on the second cycle. The use of SWCNTs to provide a stable nanoscale electrical network to support Ge-NPs resulted in a hybrid three-dimensional free-standing electrode, which is an attractive alternative to the conventional composite-current collector approach. The Ge-NP:SWCNT hybrid electrode with thin film titanium contacts produced electrode capacities of 983 mAh g–1 versus Li/Li+ up to 3 V. The higher anode capacity for the hybrid is maintained at modest cycling rates up to 1C. The pairing of the hybrid electrode with a commerical LiFePO4 cathode showed excellent performance with anode capacities of 800 mAh g–1 over a 1 V discharge range. Even at higher discharge rates, up to 1C, the anode energy density changes by only 8.5%. Thus, this demonstrates the first full battery comprising a free-standing Ge-based anode with a high power cathode exhibiting improved energy and power density.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpt0L1OwzAUBWALgUQpDLyBFwaGgH_ipBlLRX-kCoaCGKNr5xocpUllu0LdeAfekCchpYiJ6d7h09HRIeSSsxvOBL-tN4KpohDvR2TACymSPFXq-O9P81NyFkLNmJKMywGp5zvtXUVn6NfQuu2aPkDbbcBHZxr8-vhcufa1weQFmoZOwOuu_RFxq5FOPWKyitBWPaLjtqswUNt5unTxbZ-16PUdxIjeYTgnJxaagBe_d0iep_dPk3myfJwtJuNlAlKomBQjo2wuJTfIMpPlGXJT8TRlMrcZMGm50ABG5yM-KpgSWmoBHNGC0JlShRyS60Ou8V0IHm258W4NfldyVu5HKv9G6u3VwYIJZd1tfds3-8d9A6q2aAI</recordid><startdate>20111117</startdate><enddate>20111117</enddate><creator>DiLeo, Roberta A</creator><creator>Frisco, Sarah</creator><creator>Ganter, Matthew J</creator><creator>Rogers, Reginald E</creator><creator>Raffaelle, Ryne P</creator><creator>Landi, Brian J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111117</creationdate><title>Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries</title><author>DiLeo, Roberta A ; Frisco, Sarah ; Ganter, Matthew J ; Rogers, Reginald E ; Raffaelle, Ryne P ; Landi, Brian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-98c5f7331ce06c676e1cd144037f6a03f12baacb78189052b3b2a1eefa2b65593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiLeo, Roberta A</creatorcontrib><creatorcontrib>Frisco, Sarah</creatorcontrib><creatorcontrib>Ganter, Matthew J</creatorcontrib><creatorcontrib>Rogers, Reginald E</creatorcontrib><creatorcontrib>Raffaelle, Ryne P</creatorcontrib><creatorcontrib>Landi, Brian J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiLeo, Roberta A</au><au>Frisco, Sarah</au><au>Ganter, Matthew J</au><au>Rogers, Reginald E</au><au>Raffaelle, Ryne P</au><au>Landi, Brian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-11-17</date><risdate>2011</risdate><volume>115</volume><issue>45</issue><spage>22609</spage><epage>22614</epage><pages>22609-22614</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Germanium nanoparticles (Ge-NPs) were synthesized through a one-step chemical vapor deposition process and were included in a hybrid free-standing single-wall carbon nanotube (SWCNT) electrode. The Ge-NPs were characterized through scanning electron microscopy and Raman spectroscopy to confirm the presence of crystalline nanoparticles with average diameters of 60 nm. Electrochemical testing of the Ge-NPs shows high reversible lithium ion capacity up to 900 mAh g–1 and a Coulombic efficiency of 96% on the first cycle, with capacities realizing 1000 mAh g–1 and a Coulombic efficiency of 98% on the second cycle. The use of SWCNTs to provide a stable nanoscale electrical network to support Ge-NPs resulted in a hybrid three-dimensional free-standing electrode, which is an attractive alternative to the conventional composite-current collector approach. The Ge-NP:SWCNT hybrid electrode with thin film titanium contacts produced electrode capacities of 983 mAh g–1 versus Li/Li+ up to 3 V. The higher anode capacity for the hybrid is maintained at modest cycling rates up to 1C. The pairing of the hybrid electrode with a commerical LiFePO4 cathode showed excellent performance with anode capacities of 800 mAh g–1 over a 1 V discharge range. Even at higher discharge rates, up to 1C, the anode energy density changes by only 8.5%. Thus, this demonstrates the first full battery comprising a free-standing Ge-based anode with a high power cathode exhibiting improved energy and power density.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp205992w</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2011-11, Vol.115 (45), p.22609-22614
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp205992w
source ACS Publications
subjects C: Energy Conversion and Storage
title Hybrid Germanium Nanoparticle–Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Germanium%20Nanoparticle%E2%80%93Single-Wall%20Carbon%20Nanotube%20Free-Standing%20Anodes%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=DiLeo,%20Roberta%20A&rft.date=2011-11-17&rft.volume=115&rft.issue=45&rft.spage=22609&rft.epage=22614&rft.pages=22609-22614&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp205992w&rft_dat=%3Cacs_cross%3Ei36429853%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true