Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes

The electronic transport of three kinds of ultrasmall single-wall carbon nanotubes are studied by using nonequilibrium Green’s function method. It is found that the transmission function displays a clear stepwise structure that gives the number of electron channels. The calculated power factor of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2011-11, Vol.115 (44), p.21996-22001
Hauptverfasser: Tan, X. J, Liu, H. J, Wen, Y. W, Lv, H. Y, Pan, L, Shi, J, Tang, X. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22001
container_issue 44
container_start_page 21996
container_title Journal of physical chemistry. C
container_volume 115
creator Tan, X. J
Liu, H. J
Wen, Y. W
Lv, H. Y
Pan, L
Shi, J
Tang, X. F
description The electronic transport of three kinds of ultrasmall single-wall carbon nanotubes are studied by using nonequilibrium Green’s function method. It is found that the transmission function displays a clear stepwise structure that gives the number of electron channels. The calculated power factor of these nanotubes can be optimized to much higher values in a wide temperature range. Using nonequilibrium molecule dynamics simulations, the lattice thermal conductivity of these nanotubes are predicated with quantum correction. Our calculations indicate that the (4,2) tube has relatively higher room temperature figure of merit (ZT value) compared with those of the (5,0) and (3,3) tubes. Moreover, the thermoelectric performance of these nanotubes can be greatly enhanced by surface design, formation of bundles, increasing the tube length, and so on, which significantly reduce the phonon and electron-derived thermal conductance.
doi_str_mv 10.1021/jp205333m
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp205333m</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g6827752</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-510050b79700e4863bb6716868f89fce6c78f7f9456e559b57fd2287d572782a3</originalsourceid><addsrcrecordid>eNptj7tOwzAYhS0EEqUw8AZZGBgCvsS3EZWrVAESrRgj2_0NiZw4stOBtydVUSemc4ZP54LQJcE3BFNy2w4Uc8ZYd4RmRDNayorz44Ov5Ck6y7nFE4QJm6H71TekLkIAN6bGFe8pDpDGBnIRfbEOYzK5MyEUH03_FaD83PmFSTb2xavp47i1kM_RiTchw8WfztH68WG1eC6Xb08vi7tlaSjXY8nJVIut1BJjqJRg1gpJhBLKK-0dCCeVl15XXADn2nLpN5QqueGSSkUNm6Prfa5LMecEvh5S05n0UxNc7-7Xh_sTe7Vnjct1G7epn5b9w_0C3jJYYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes</title><source>American Chemical Society</source><creator>Tan, X. J ; Liu, H. J ; Wen, Y. W ; Lv, H. Y ; Pan, L ; Shi, J ; Tang, X. F</creator><creatorcontrib>Tan, X. J ; Liu, H. J ; Wen, Y. W ; Lv, H. Y ; Pan, L ; Shi, J ; Tang, X. F</creatorcontrib><description>The electronic transport of three kinds of ultrasmall single-wall carbon nanotubes are studied by using nonequilibrium Green’s function method. It is found that the transmission function displays a clear stepwise structure that gives the number of electron channels. The calculated power factor of these nanotubes can be optimized to much higher values in a wide temperature range. Using nonequilibrium molecule dynamics simulations, the lattice thermal conductivity of these nanotubes are predicated with quantum correction. Our calculations indicate that the (4,2) tube has relatively higher room temperature figure of merit (ZT value) compared with those of the (5,0) and (3,3) tubes. Moreover, the thermoelectric performance of these nanotubes can be greatly enhanced by surface design, formation of bundles, increasing the tube length, and so on, which significantly reduce the phonon and electron-derived thermal conductance.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp205333m</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2011-11, Vol.115 (44), p.21996-22001</ispartof><rights>Copyright © 2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a259t-510050b79700e4863bb6716868f89fce6c78f7f9456e559b57fd2287d572782a3</citedby><cites>FETCH-LOGICAL-a259t-510050b79700e4863bb6716868f89fce6c78f7f9456e559b57fd2287d572782a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp205333m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp205333m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Tan, X. J</creatorcontrib><creatorcontrib>Liu, H. J</creatorcontrib><creatorcontrib>Wen, Y. W</creatorcontrib><creatorcontrib>Lv, H. Y</creatorcontrib><creatorcontrib>Pan, L</creatorcontrib><creatorcontrib>Shi, J</creatorcontrib><creatorcontrib>Tang, X. F</creatorcontrib><title>Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The electronic transport of three kinds of ultrasmall single-wall carbon nanotubes are studied by using nonequilibrium Green’s function method. It is found that the transmission function displays a clear stepwise structure that gives the number of electron channels. The calculated power factor of these nanotubes can be optimized to much higher values in a wide temperature range. Using nonequilibrium molecule dynamics simulations, the lattice thermal conductivity of these nanotubes are predicated with quantum correction. Our calculations indicate that the (4,2) tube has relatively higher room temperature figure of merit (ZT value) compared with those of the (5,0) and (3,3) tubes. Moreover, the thermoelectric performance of these nanotubes can be greatly enhanced by surface design, formation of bundles, increasing the tube length, and so on, which significantly reduce the phonon and electron-derived thermal conductance.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptj7tOwzAYhS0EEqUw8AZZGBgCvsS3EZWrVAESrRgj2_0NiZw4stOBtydVUSemc4ZP54LQJcE3BFNy2w4Uc8ZYd4RmRDNayorz44Ov5Ck6y7nFE4QJm6H71TekLkIAN6bGFe8pDpDGBnIRfbEOYzK5MyEUH03_FaD83PmFSTb2xavp47i1kM_RiTchw8WfztH68WG1eC6Xb08vi7tlaSjXY8nJVIut1BJjqJRg1gpJhBLKK-0dCCeVl15XXADn2nLpN5QqueGSSkUNm6Prfa5LMecEvh5S05n0UxNc7-7Xh_sTe7Vnjct1G7epn5b9w_0C3jJYYQ</recordid><startdate>20111110</startdate><enddate>20111110</enddate><creator>Tan, X. J</creator><creator>Liu, H. J</creator><creator>Wen, Y. W</creator><creator>Lv, H. Y</creator><creator>Pan, L</creator><creator>Shi, J</creator><creator>Tang, X. F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20111110</creationdate><title>Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes</title><author>Tan, X. J ; Liu, H. J ; Wen, Y. W ; Lv, H. Y ; Pan, L ; Shi, J ; Tang, X. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-510050b79700e4863bb6716868f89fce6c78f7f9456e559b57fd2287d572782a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, X. J</creatorcontrib><creatorcontrib>Liu, H. J</creatorcontrib><creatorcontrib>Wen, Y. W</creatorcontrib><creatorcontrib>Lv, H. Y</creatorcontrib><creatorcontrib>Pan, L</creatorcontrib><creatorcontrib>Shi, J</creatorcontrib><creatorcontrib>Tang, X. F</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, X. J</au><au>Liu, H. J</au><au>Wen, Y. W</au><au>Lv, H. Y</au><au>Pan, L</au><au>Shi, J</au><au>Tang, X. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2011-11-10</date><risdate>2011</risdate><volume>115</volume><issue>44</issue><spage>21996</spage><epage>22001</epage><pages>21996-22001</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The electronic transport of three kinds of ultrasmall single-wall carbon nanotubes are studied by using nonequilibrium Green’s function method. It is found that the transmission function displays a clear stepwise structure that gives the number of electron channels. The calculated power factor of these nanotubes can be optimized to much higher values in a wide temperature range. Using nonequilibrium molecule dynamics simulations, the lattice thermal conductivity of these nanotubes are predicated with quantum correction. Our calculations indicate that the (4,2) tube has relatively higher room temperature figure of merit (ZT value) compared with those of the (5,0) and (3,3) tubes. Moreover, the thermoelectric performance of these nanotubes can be greatly enhanced by surface design, formation of bundles, increasing the tube length, and so on, which significantly reduce the phonon and electron-derived thermal conductance.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp205333m</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2011-11, Vol.115 (44), p.21996-22001
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp205333m
source American Chemical Society
subjects C: Energy Conversion and Storage
title Thermoelectric Properties of Ultrasmall Single-Wall Carbon Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20Properties%20of%20Ultrasmall%20Single-Wall%20Carbon%20Nanotubes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Tan,%20X.%20J&rft.date=2011-11-10&rft.volume=115&rft.issue=44&rft.spage=21996&rft.epage=22001&rft.pages=21996-22001&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp205333m&rft_dat=%3Cacs_cross%3Eg6827752%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true