Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes

Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-04, Vol.116 (14), p.8000-8007
Hauptverfasser: Shpaisman, Nava, Givan, Uri, Kwiat, Moria, Pevzner, Alexander, Elnathan, Roey, Patolsky, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8007
container_issue 14
container_start_page 8000
container_title Journal of physical chemistry. C
container_volume 116
creator Shpaisman, Nava
Givan, Uri
Kwiat, Moria
Pevzner, Alexander
Elnathan, Roey
Patolsky, Fernando
description Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices.
doi_str_mv 10.1021/jp2037944
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2037944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b834370736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</originalsourceid><addsrcrecordid>eNptkD9PwzAUxC0EEqUw8A2yMDAE_N_JiCIKSBUMgTl6ceziKLEjOx367WlVVBamd0_63Ul3CN0S_EAwJY_9RDFTJednaEFKRnPFhTg_aa4u0VVKPcaCYcIWaFUFP8cwDKbL6p2fv01yKQs2W5kYwwgbb2ans9qMTgffbfXs_Car3XB4s3fwYd62Jl2jCwtDMje_d4m-Vs-f1Wu-_nh5q57WOTAh5txawqBQVEpBlaWtlZQTRTVIaKUS2oLFHS0KAqJssdTC2pJLIXBrmJTGsCW6P-bqGFKKxjZTdCPEXUNwcxigOQ2wZ--O7ARJw2AjeO3SyUBFQQteqD8OdGr6sI1-3-CfvB-ow2bu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</title><source>ACS Publications</source><creator>Shpaisman, Nava ; Givan, Uri ; Kwiat, Moria ; Pevzner, Alexander ; Elnathan, Roey ; Patolsky, Fernando</creator><creatorcontrib>Shpaisman, Nava ; Givan, Uri ; Kwiat, Moria ; Pevzner, Alexander ; Elnathan, Roey ; Patolsky, Fernando</creatorcontrib><description>Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2037944</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Classical and quantum physics: mechanics and fields ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Magnetic properties and materials ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Physics ; Quantum information ; Small particles and nanoscale materials ; Studies of specific magnetic materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of physical chemistry. C, 2012-04, Vol.116 (14), p.8000-8007</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</citedby><cites>FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2037944$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2037944$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25828487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shpaisman, Nava</creatorcontrib><creatorcontrib>Givan, Uri</creatorcontrib><creatorcontrib>Kwiat, Moria</creatorcontrib><creatorcontrib>Pevzner, Alexander</creatorcontrib><creatorcontrib>Elnathan, Roey</creatorcontrib><creatorcontrib>Patolsky, Fernando</creatorcontrib><title>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Magnetic properties and materials</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Quantum information</subject><subject>Small particles and nanoscale materials</subject><subject>Studies of specific magnetic materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAUxC0EEqUw8A2yMDAE_N_JiCIKSBUMgTl6ceziKLEjOx367WlVVBamd0_63Ul3CN0S_EAwJY_9RDFTJednaEFKRnPFhTg_aa4u0VVKPcaCYcIWaFUFP8cwDKbL6p2fv01yKQs2W5kYwwgbb2ans9qMTgffbfXs_Car3XB4s3fwYd62Jl2jCwtDMje_d4m-Vs-f1Wu-_nh5q57WOTAh5txawqBQVEpBlaWtlZQTRTVIaKUS2oLFHS0KAqJssdTC2pJLIXBrmJTGsCW6P-bqGFKKxjZTdCPEXUNwcxigOQ2wZ--O7ARJw2AjeO3SyUBFQQteqD8OdGr6sI1-3-CfvB-ow2bu</recordid><startdate>20120412</startdate><enddate>20120412</enddate><creator>Shpaisman, Nava</creator><creator>Givan, Uri</creator><creator>Kwiat, Moria</creator><creator>Pevzner, Alexander</creator><creator>Elnathan, Roey</creator><creator>Patolsky, Fernando</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120412</creationdate><title>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</title><author>Shpaisman, Nava ; Givan, Uri ; Kwiat, Moria ; Pevzner, Alexander ; Elnathan, Roey ; Patolsky, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Magnetic properties and materials</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Quantum information</topic><topic>Small particles and nanoscale materials</topic><topic>Studies of specific magnetic materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shpaisman, Nava</creatorcontrib><creatorcontrib>Givan, Uri</creatorcontrib><creatorcontrib>Kwiat, Moria</creatorcontrib><creatorcontrib>Pevzner, Alexander</creatorcontrib><creatorcontrib>Elnathan, Roey</creatorcontrib><creatorcontrib>Patolsky, Fernando</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shpaisman, Nava</au><au>Givan, Uri</au><au>Kwiat, Moria</au><au>Pevzner, Alexander</au><au>Elnathan, Roey</au><au>Patolsky, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-04-12</date><risdate>2012</risdate><volume>116</volume><issue>14</issue><spage>8000</spage><epage>8007</epage><pages>8000-8007</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp2037944</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-04, Vol.116 (14), p.8000-8007
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp2037944
source ACS Publications
subjects Classical and quantum physics: mechanics and fields
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Magnetic properties and materials
Materials science
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Physics
Quantum information
Small particles and nanoscale materials
Studies of specific magnetic materials
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Synthesis%20of%20Ferromagnetic%20Semiconducting%20Silicon%20Nanotubes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Shpaisman,%20Nava&rft.date=2012-04-12&rft.volume=116&rft.issue=14&rft.spage=8000&rft.epage=8007&rft.pages=8000-8007&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2037944&rft_dat=%3Cacs_cross%3Eb834370736%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true