Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes
Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum int...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-04, Vol.116 (14), p.8000-8007 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8007 |
---|---|
container_issue | 14 |
container_start_page | 8000 |
container_title | Journal of physical chemistry. C |
container_volume | 116 |
creator | Shpaisman, Nava Givan, Uri Kwiat, Moria Pevzner, Alexander Elnathan, Roey Patolsky, Fernando |
description | Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices. |
doi_str_mv | 10.1021/jp2037944 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp2037944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b834370736</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</originalsourceid><addsrcrecordid>eNptkD9PwzAUxC0EEqUw8A2yMDAE_N_JiCIKSBUMgTl6ceziKLEjOx367WlVVBamd0_63Ul3CN0S_EAwJY_9RDFTJednaEFKRnPFhTg_aa4u0VVKPcaCYcIWaFUFP8cwDKbL6p2fv01yKQs2W5kYwwgbb2ans9qMTgffbfXs_Car3XB4s3fwYd62Jl2jCwtDMje_d4m-Vs-f1Wu-_nh5q57WOTAh5txawqBQVEpBlaWtlZQTRTVIaKUS2oLFHS0KAqJssdTC2pJLIXBrmJTGsCW6P-bqGFKKxjZTdCPEXUNwcxigOQ2wZ--O7ARJw2AjeO3SyUBFQQteqD8OdGr6sI1-3-CfvB-ow2bu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</title><source>ACS Publications</source><creator>Shpaisman, Nava ; Givan, Uri ; Kwiat, Moria ; Pevzner, Alexander ; Elnathan, Roey ; Patolsky, Fernando</creator><creatorcontrib>Shpaisman, Nava ; Givan, Uri ; Kwiat, Moria ; Pevzner, Alexander ; Elnathan, Roey ; Patolsky, Fernando</creatorcontrib><description>Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp2037944</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Classical and quantum physics: mechanics and fields ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Magnetic properties and materials ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Physics ; Quantum information ; Small particles and nanoscale materials ; Studies of specific magnetic materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Journal of physical chemistry. C, 2012-04, Vol.116 (14), p.8000-8007</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</citedby><cites>FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp2037944$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp2037944$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25828487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shpaisman, Nava</creatorcontrib><creatorcontrib>Givan, Uri</creatorcontrib><creatorcontrib>Kwiat, Moria</creatorcontrib><creatorcontrib>Pevzner, Alexander</creatorcontrib><creatorcontrib>Elnathan, Roey</creatorcontrib><creatorcontrib>Patolsky, Fernando</creatorcontrib><title>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices.</description><subject>Classical and quantum physics: mechanics and fields</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Magnetic properties and materials</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Physics</subject><subject>Quantum information</subject><subject>Small particles and nanoscale materials</subject><subject>Studies of specific magnetic materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAUxC0EEqUw8A2yMDAE_N_JiCIKSBUMgTl6ceziKLEjOx367WlVVBamd0_63Ul3CN0S_EAwJY_9RDFTJednaEFKRnPFhTg_aa4u0VVKPcaCYcIWaFUFP8cwDKbL6p2fv01yKQs2W5kYwwgbb2ans9qMTgffbfXs_Car3XB4s3fwYd62Jl2jCwtDMje_d4m-Vs-f1Wu-_nh5q57WOTAh5txawqBQVEpBlaWtlZQTRTVIaKUS2oLFHS0KAqJssdTC2pJLIXBrmJTGsCW6P-bqGFKKxjZTdCPEXUNwcxigOQ2wZ--O7ARJw2AjeO3SyUBFQQteqD8OdGr6sI1-3-CfvB-ow2bu</recordid><startdate>20120412</startdate><enddate>20120412</enddate><creator>Shpaisman, Nava</creator><creator>Givan, Uri</creator><creator>Kwiat, Moria</creator><creator>Pevzner, Alexander</creator><creator>Elnathan, Roey</creator><creator>Patolsky, Fernando</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120412</creationdate><title>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</title><author>Shpaisman, Nava ; Givan, Uri ; Kwiat, Moria ; Pevzner, Alexander ; Elnathan, Roey ; Patolsky, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-ff13a87266527f2bf624172ca6ab675cfaf0d2881a59b06c5ff946550be366ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Classical and quantum physics: mechanics and fields</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Magnetic properties and materials</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Physics</topic><topic>Quantum information</topic><topic>Small particles and nanoscale materials</topic><topic>Studies of specific magnetic materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shpaisman, Nava</creatorcontrib><creatorcontrib>Givan, Uri</creatorcontrib><creatorcontrib>Kwiat, Moria</creatorcontrib><creatorcontrib>Pevzner, Alexander</creatorcontrib><creatorcontrib>Elnathan, Roey</creatorcontrib><creatorcontrib>Patolsky, Fernando</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shpaisman, Nava</au><au>Givan, Uri</au><au>Kwiat, Moria</au><au>Pevzner, Alexander</au><au>Elnathan, Roey</au><au>Patolsky, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-04-12</date><risdate>2012</risdate><volume>116</volume><issue>14</issue><spage>8000</spage><epage>8007</epage><pages>8000-8007</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Recently, transition-metal-doped semiconductor nanostructures, so-called diluted magnetic semiconductors, such as dots, rods, wires, and films, have been the subject of intense research efforts due to their fascinating properties and potential applications in bioimaging, spintronics, and quantum interference information processing. Here, we present a method for synthesizing superdiluted Ni-doped ferromagnetic silicon nanotubes (SiNTs) (with room-temperature ferromagnetism), with minimal synthetic steps and with maximal control of the resultant SiNTs structure and composition. The unique advantage of our approach is the simplicity that provides us precise control of the ferromagnetic SiNT parameters, length, outer and inner diameter, wall thickness, Ni concentration, and crystallinity, by changing the template membrane (pore diameter), dipping time in the catalyst, growth time, and decomposition temperature. Numerous combinations of SiNT parameters can therefore be prepared that can influence their magnetic and electronic properties. This level of control can lead to novel future nanoelectronic and nanospintronic devices.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp2037944</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2012-04, Vol.116 (14), p.8000-8007 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_jp2037944 |
source | ACS Publications |
subjects | Classical and quantum physics: mechanics and fields Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Magnetic properties and materials Materials science Nanoscale materials and structures: fabrication and characterization Nanotubes Physics Quantum information Small particles and nanoscale materials Studies of specific magnetic materials Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Controlled Synthesis of Ferromagnetic Semiconducting Silicon Nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Synthesis%20of%20Ferromagnetic%20Semiconducting%20Silicon%20Nanotubes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Shpaisman,%20Nava&rft.date=2012-04-12&rft.volume=116&rft.issue=14&rft.spage=8000&rft.epage=8007&rft.pages=8000-8007&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp2037944&rft_dat=%3Cacs_cross%3Eb834370736%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |