Gating of Nanopores: Modeling and Implementation of Logic Gates

Nanoporous and nanofluidic structures can be coated with metal and insulating layers deposited on the pore surface: when an electrolyte solution is in contact with the internal insulating layer, well-defined ionic conductance levels could be tuned by applying a gate potential to the external metalli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2010-12, Vol.114 (49), p.21287-21290
Hauptverfasser: Mafe, Salvador, Manzanares, José A, Ramirez, Patricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21290
container_issue 49
container_start_page 21287
container_title Journal of physical chemistry. C
container_volume 114
creator Mafe, Salvador
Manzanares, José A
Ramirez, Patricio
description Nanoporous and nanofluidic structures can be coated with metal and insulating layers deposited on the pore surface: when an electrolyte solution is in contact with the internal insulating layer, well-defined ionic conductance levels could be tuned by applying a gate potential to the external metallic layer. We study theoretically the dependence of the effective gate potential at the insulating layer/solution interface with the applied gate potential at the metallic surface as well as the change of the nanopore conductance with the gate potential for different electrolyte solution concentrations and nanopore radii. We solve the Poisson−Boltzmann equation to obtain the electrical potential distribution in the two regions of the pore cross-section, the insulating layer, and the inner pore solution. The model provides estimations of the effective nanopore surface charge density that could be achieved by gating the nanopore (this charge determines the nanopore selectivity in practical cases). As an application, we have shown that NOR and NAND logic gate schemes based on input and output electrical signals could be implemented by exploiting the gating of the nanopore conductance.
doi_str_mv 10.1021/jp1087114
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp1087114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c36617578</sourcerecordid><originalsourceid>FETCH-LOGICAL-a259t-2a177a7fe6d0d6e5674ecab040e80542124fd816525fa812bdc3aaa60707b1a83</originalsourceid><addsrcrecordid>eNptz7FOwzAQBmALgUQpDLxBFgaGwJ1jxykLQhWUSgEWmKNLbFeJUjuyw8Dbk6ioE9OdTt-d7mfsGuEOgeN9NyAUClGcsAWuMp4qIeXpsRfqnF3E2AHIDDBbsMcNja3bJd4m7-T84IOJD8mb16afx-R0st0PvdkbN07Su1mWftc2ybRp4iU7s9RHc_VXl-zr5flz_ZqWH5vt-qlMicvVmHJCpUhZk2vQuZG5EqahGgSYAqTgyIXVBeaSS0sF8lo3GRHloEDVSEW2ZLeHu03wMQZjqyG0ewo_FUI1J6-OySd7c7DUxKrz38FNn_3jfgExwFXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gating of Nanopores: Modeling and Implementation of Logic Gates</title><source>ACS Publications</source><creator>Mafe, Salvador ; Manzanares, José A ; Ramirez, Patricio</creator><creatorcontrib>Mafe, Salvador ; Manzanares, José A ; Ramirez, Patricio</creatorcontrib><description>Nanoporous and nanofluidic structures can be coated with metal and insulating layers deposited on the pore surface: when an electrolyte solution is in contact with the internal insulating layer, well-defined ionic conductance levels could be tuned by applying a gate potential to the external metallic layer. We study theoretically the dependence of the effective gate potential at the insulating layer/solution interface with the applied gate potential at the metallic surface as well as the change of the nanopore conductance with the gate potential for different electrolyte solution concentrations and nanopore radii. We solve the Poisson−Boltzmann equation to obtain the electrical potential distribution in the two regions of the pore cross-section, the insulating layer, and the inner pore solution. The model provides estimations of the effective nanopore surface charge density that could be achieved by gating the nanopore (this charge determines the nanopore selectivity in practical cases). As an application, we have shown that NOR and NAND logic gate schemes based on input and output electrical signals could be implemented by exploiting the gating of the nanopore conductance.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp1087114</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Nanops and Nanostructures</subject><ispartof>Journal of physical chemistry. C, 2010-12, Vol.114 (49), p.21287-21290</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a259t-2a177a7fe6d0d6e5674ecab040e80542124fd816525fa812bdc3aaa60707b1a83</citedby><cites>FETCH-LOGICAL-a259t-2a177a7fe6d0d6e5674ecab040e80542124fd816525fa812bdc3aaa60707b1a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp1087114$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp1087114$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Mafe, Salvador</creatorcontrib><creatorcontrib>Manzanares, José A</creatorcontrib><creatorcontrib>Ramirez, Patricio</creatorcontrib><title>Gating of Nanopores: Modeling and Implementation of Logic Gates</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nanoporous and nanofluidic structures can be coated with metal and insulating layers deposited on the pore surface: when an electrolyte solution is in contact with the internal insulating layer, well-defined ionic conductance levels could be tuned by applying a gate potential to the external metallic layer. We study theoretically the dependence of the effective gate potential at the insulating layer/solution interface with the applied gate potential at the metallic surface as well as the change of the nanopore conductance with the gate potential for different electrolyte solution concentrations and nanopore radii. We solve the Poisson−Boltzmann equation to obtain the electrical potential distribution in the two regions of the pore cross-section, the insulating layer, and the inner pore solution. The model provides estimations of the effective nanopore surface charge density that could be achieved by gating the nanopore (this charge determines the nanopore selectivity in practical cases). As an application, we have shown that NOR and NAND logic gate schemes based on input and output electrical signals could be implemented by exploiting the gating of the nanopore conductance.</description><subject>C: Nanops and Nanostructures</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptz7FOwzAQBmALgUQpDLxBFgaGwJ1jxykLQhWUSgEWmKNLbFeJUjuyw8Dbk6ioE9OdTt-d7mfsGuEOgeN9NyAUClGcsAWuMp4qIeXpsRfqnF3E2AHIDDBbsMcNja3bJd4m7-T84IOJD8mb16afx-R0st0PvdkbN07Su1mWftc2ybRp4iU7s9RHc_VXl-zr5flz_ZqWH5vt-qlMicvVmHJCpUhZk2vQuZG5EqahGgSYAqTgyIXVBeaSS0sF8lo3GRHloEDVSEW2ZLeHu03wMQZjqyG0ewo_FUI1J6-OySd7c7DUxKrz38FNn_3jfgExwFXx</recordid><startdate>20101216</startdate><enddate>20101216</enddate><creator>Mafe, Salvador</creator><creator>Manzanares, José A</creator><creator>Ramirez, Patricio</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101216</creationdate><title>Gating of Nanopores: Modeling and Implementation of Logic Gates</title><author>Mafe, Salvador ; Manzanares, José A ; Ramirez, Patricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a259t-2a177a7fe6d0d6e5674ecab040e80542124fd816525fa812bdc3aaa60707b1a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Nanops and Nanostructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mafe, Salvador</creatorcontrib><creatorcontrib>Manzanares, José A</creatorcontrib><creatorcontrib>Ramirez, Patricio</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mafe, Salvador</au><au>Manzanares, José A</au><au>Ramirez, Patricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gating of Nanopores: Modeling and Implementation of Logic Gates</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-12-16</date><risdate>2010</risdate><volume>114</volume><issue>49</issue><spage>21287</spage><epage>21290</epage><pages>21287-21290</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nanoporous and nanofluidic structures can be coated with metal and insulating layers deposited on the pore surface: when an electrolyte solution is in contact with the internal insulating layer, well-defined ionic conductance levels could be tuned by applying a gate potential to the external metallic layer. We study theoretically the dependence of the effective gate potential at the insulating layer/solution interface with the applied gate potential at the metallic surface as well as the change of the nanopore conductance with the gate potential for different electrolyte solution concentrations and nanopore radii. We solve the Poisson−Boltzmann equation to obtain the electrical potential distribution in the two regions of the pore cross-section, the insulating layer, and the inner pore solution. The model provides estimations of the effective nanopore surface charge density that could be achieved by gating the nanopore (this charge determines the nanopore selectivity in practical cases). As an application, we have shown that NOR and NAND logic gate schemes based on input and output electrical signals could be implemented by exploiting the gating of the nanopore conductance.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp1087114</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-12, Vol.114 (49), p.21287-21290
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp1087114
source ACS Publications
subjects C: Nanops and Nanostructures
title Gating of Nanopores: Modeling and Implementation of Logic Gates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gating%20of%20Nanopores:%20Modeling%20and%20Implementation%20of%20Logic%20Gates&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Mafe,%20Salvador&rft.date=2010-12-16&rft.volume=114&rft.issue=49&rft.spage=21287&rft.epage=21290&rft.pages=21287-21290&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp1087114&rft_dat=%3Cacs_cross%3Ec36617578%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true