Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide

The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that abov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2010-12, Vol.114 (49), p.21775-21785
Hauptverfasser: Lane, George H, Bayley, Paul M, Clare, Bronya R, Best, Adam S, MacFarlane, Douglas R, Forsyth, Maria, Hollenkamp, Anthony F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21785
container_issue 49
container_start_page 21775
container_title Journal of physical chemistry. C
container_volume 114
creator Lane, George H
Bayley, Paul M
Clare, Bronya R
Best, Adam S
MacFarlane, Douglas R
Forsyth, Maria
Hollenkamp, Anthony F
description The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity. Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.
doi_str_mv 10.1021/jp1054809
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp1054809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a229568832</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-c22e14f8752ab9d155c150b0e1c2f165fcf7f2b863f90abed48969182a39c3363</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EEqVw4A18QaISAf_EacKNVgUqlYIEnCPHsRVXTlxs55DH4U1xVeiJ065W38yOBoBLjG4xIvhus8WIpTkqjsAIF5Qk05Sx48OeTk_BmfcbhBhFmI7A99J2WsCV_up1DRdGiuCsGYKEyrp4Do3uW_giAzdwxkOQTkt_D9-awWvBzc2fRDSy3R94V8NlF0HFhY6q99DXUQOtguskGjWDSdZJ1YfBtNZtG2t0t_sx0_5amd4663ujbDeYiW51Lc_BieLGy4vfOQafj4uP-XOyen1azh9WCaeEhUQQInGq8ikjvCpqzJjADFVIYkEUzpgSaqpIlWdUFYhXsk7zIitwTjgtBKUZHYPJ3lfEBN5JVW6dbrkbSozKXbflodvIXu1ZLny5sb3rYrJ_uB_BPXs-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide</title><source>ACS Publications</source><creator>Lane, George H ; Bayley, Paul M ; Clare, Bronya R ; Best, Adam S ; MacFarlane, Douglas R ; Forsyth, Maria ; Hollenkamp, Anthony F</creator><creatorcontrib>Lane, George H ; Bayley, Paul M ; Clare, Bronya R ; Best, Adam S ; MacFarlane, Douglas R ; Forsyth, Maria ; Hollenkamp, Anthony F</creatorcontrib><description>The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity. Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp1054809</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2010-12, Vol.114 (49), p.21775-21785</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-c22e14f8752ab9d155c150b0e1c2f165fcf7f2b863f90abed48969182a39c3363</citedby><cites>FETCH-LOGICAL-a325t-c22e14f8752ab9d155c150b0e1c2f165fcf7f2b863f90abed48969182a39c3363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp1054809$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp1054809$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Lane, George H</creatorcontrib><creatorcontrib>Bayley, Paul M</creatorcontrib><creatorcontrib>Clare, Bronya R</creatorcontrib><creatorcontrib>Best, Adam S</creatorcontrib><creatorcontrib>MacFarlane, Douglas R</creatorcontrib><creatorcontrib>Forsyth, Maria</creatorcontrib><creatorcontrib>Hollenkamp, Anthony F</creatorcontrib><title>Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity. Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkM1OwzAQhC0EEqVw4A18QaISAf_EacKNVgUqlYIEnCPHsRVXTlxs55DH4U1xVeiJ065W38yOBoBLjG4xIvhus8WIpTkqjsAIF5Qk05Sx48OeTk_BmfcbhBhFmI7A99J2WsCV_up1DRdGiuCsGYKEyrp4Do3uW_giAzdwxkOQTkt_D9-awWvBzc2fRDSy3R94V8NlF0HFhY6q99DXUQOtguskGjWDSdZJ1YfBtNZtG2t0t_sx0_5amd4663ujbDeYiW51Lc_BieLGy4vfOQafj4uP-XOyen1azh9WCaeEhUQQInGq8ikjvCpqzJjADFVIYkEUzpgSaqpIlWdUFYhXsk7zIitwTjgtBKUZHYPJ3lfEBN5JVW6dbrkbSozKXbflodvIXu1ZLny5sb3rYrJ_uB_BPXs-</recordid><startdate>20101216</startdate><enddate>20101216</enddate><creator>Lane, George H</creator><creator>Bayley, Paul M</creator><creator>Clare, Bronya R</creator><creator>Best, Adam S</creator><creator>MacFarlane, Douglas R</creator><creator>Forsyth, Maria</creator><creator>Hollenkamp, Anthony F</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101216</creationdate><title>Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide</title><author>Lane, George H ; Bayley, Paul M ; Clare, Bronya R ; Best, Adam S ; MacFarlane, Douglas R ; Forsyth, Maria ; Hollenkamp, Anthony F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-c22e14f8752ab9d155c150b0e1c2f165fcf7f2b863f90abed48969182a39c3363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lane, George H</creatorcontrib><creatorcontrib>Bayley, Paul M</creatorcontrib><creatorcontrib>Clare, Bronya R</creatorcontrib><creatorcontrib>Best, Adam S</creatorcontrib><creatorcontrib>MacFarlane, Douglas R</creatorcontrib><creatorcontrib>Forsyth, Maria</creatorcontrib><creatorcontrib>Hollenkamp, Anthony F</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lane, George H</au><au>Bayley, Paul M</au><au>Clare, Bronya R</au><au>Best, Adam S</au><au>MacFarlane, Douglas R</au><au>Forsyth, Maria</au><au>Hollenkamp, Anthony F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2010-12-16</date><risdate>2010</risdate><volume>114</volume><issue>49</issue><spage>21775</spage><epage>21785</epage><pages>21775-21785</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity. Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp1054809</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2010-12, Vol.114 (49), p.21775-21785
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp1054809
source ACS Publications
subjects C: Energy Conversion and Storage
title Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of N-Methyl-N-butylmorpholinium Bis(fluorosulfonyl)imide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20Liquid%20Electrolyte%20for%20Lithium%20Metal%20Batteries:%20Physical,%20Electrochemical,%20and%20Interfacial%20Studies%20of%20N-Methyl-N-butylmorpholinium%20Bis(fluorosulfonyl)imide&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Lane,%20George%20H&rft.date=2010-12-16&rft.volume=114&rft.issue=49&rft.spage=21775&rft.epage=21785&rft.pages=21775-21785&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp1054809&rft_dat=%3Cacs_cross%3Ea229568832%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true