Reactant Selectivity and Regiospecificity in the Catalytic Oxidation of Alkanes on Metal-Substituted Aluminophosphates

The rate of n-hexane reactions with O2 increased in parallel with the concentration of hexyl hydroperoxide (ROOH) intermediates and with the number of Mnredox sites in microporous MnAPO-5 and MnAPO-18 catalysts. These data confirmed the catalytic nature of oxidation pathways and the mechanistic rese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2007-01, Vol.111 (3), p.1402-1411
Hauptverfasser: Modén, Björn, Zhan, Bi-Zeng, Dakka, Jihad, Santiesteban, José G, Iglesia, Enrique
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1411
container_issue 3
container_start_page 1402
container_title Journal of physical chemistry. C
container_volume 111
creator Modén, Björn
Zhan, Bi-Zeng
Dakka, Jihad
Santiesteban, José G
Iglesia, Enrique
description The rate of n-hexane reactions with O2 increased in parallel with the concentration of hexyl hydroperoxide (ROOH) intermediates and with the number of Mnredox sites in microporous MnAPO-5 and MnAPO-18 catalysts. These data confirmed the catalytic nature of oxidation pathways and the mechanistic resemblance between n-alkane and cycloalkane oxidation pathways. Cyclohexane oxidation turnover rates were higher on MnAPO-5 than on MnAPO-18, because small channels in the latter inhibit contact between reactants and Mn active centers. In contrast, n-hexane oxidation turnover rates (per redox-active Mn center) were similar on MnAPO-5 and MnAPO-18, because smaller n-hexane reactants diffuse rapidly and contact active sites in both microporous structures. MnAPO-18 is able to select reactants based on their size, but no regiospecificity was detected on MnAPO-18 or MnAPO-5 for n-hexane oxidation to alkanols, aldehydes, and ketones (7−8% terminal selectivity). The relative reactivity of primary and secondary C−H bonds in n-hexane was identical on both catalysts (kprim/ksec = 0.10−0.11) and similar to that predicted from relative C−H bond energies in n-hexane using Evans−Polanyi relations. Spatial constraints within MnAPO-18 did not lead to any preference for terminal oxidation or to hexanoic acid as the main product, in contradiction with previous reports on materials with identical structure. The lack of specific regioselectivity on MnAPO-18 is not unexpected, in view of its large intracrystalline cages, of the accepted involvement of ROOH intermediates, and of the lack of diffusional constraints on the rates of n-hexane oxidation on MnAPO-18 catalysts.
doi_str_mv 10.1021/jp062869v
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp062869v</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a160327348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-33bf4115407defc64cd10431a6c9175a537c673a11ee69a43a910fadfac6a3f83</originalsourceid><addsrcrecordid>eNptkEtPAjEUhRujiYgu_AfduHAx2k47U2ZJiK8EgwFcN5fOrRSGmcm0EPj3lmBYubqvL-fkHkLuOXviLOXPq5bl6SAvdhekxwuRJkpm2eW5l-qa3Hi_YiwTjIse2U0RTIA60BlWaILbuXCgUJd0ij-u8S0aZ505Ll1NwxLpCAJUh-AMnexdCcE1NW0sHVZrqNHTOH1iJJLZduGDC9uAZTxuN65u2mUUXEJAf0uuLFQe7_5qn3y_vsxH78l48vYxGo4TSAsVEiEWVnKeSaZKtCaXpuRMCg65KbjKIBPK5EoA54h5AVJAwZmF0oLJQdiB6JPHk67pGu87tLrt3Aa6g-ZMHwPT58Aim5xY5wPuzyB0ax09VKbnXzPNZc6kSqdaRv7hxIPxetVsuzp-8o_uL49Ye6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reactant Selectivity and Regiospecificity in the Catalytic Oxidation of Alkanes on Metal-Substituted Aluminophosphates</title><source>American Chemical Society Journals</source><creator>Modén, Björn ; Zhan, Bi-Zeng ; Dakka, Jihad ; Santiesteban, José G ; Iglesia, Enrique</creator><creatorcontrib>Modén, Björn ; Zhan, Bi-Zeng ; Dakka, Jihad ; Santiesteban, José G ; Iglesia, Enrique</creatorcontrib><description>The rate of n-hexane reactions with O2 increased in parallel with the concentration of hexyl hydroperoxide (ROOH) intermediates and with the number of Mnredox sites in microporous MnAPO-5 and MnAPO-18 catalysts. These data confirmed the catalytic nature of oxidation pathways and the mechanistic resemblance between n-alkane and cycloalkane oxidation pathways. Cyclohexane oxidation turnover rates were higher on MnAPO-5 than on MnAPO-18, because small channels in the latter inhibit contact between reactants and Mn active centers. In contrast, n-hexane oxidation turnover rates (per redox-active Mn center) were similar on MnAPO-5 and MnAPO-18, because smaller n-hexane reactants diffuse rapidly and contact active sites in both microporous structures. MnAPO-18 is able to select reactants based on their size, but no regiospecificity was detected on MnAPO-18 or MnAPO-5 for n-hexane oxidation to alkanols, aldehydes, and ketones (7−8% terminal selectivity). The relative reactivity of primary and secondary C−H bonds in n-hexane was identical on both catalysts (kprim/ksec = 0.10−0.11) and similar to that predicted from relative C−H bond energies in n-hexane using Evans−Polanyi relations. Spatial constraints within MnAPO-18 did not lead to any preference for terminal oxidation or to hexanoic acid as the main product, in contradiction with previous reports on materials with identical structure. The lack of specific regioselectivity on MnAPO-18 is not unexpected, in view of its large intracrystalline cages, of the accepted involvement of ROOH intermediates, and of the lack of diffusional constraints on the rates of n-hexane oxidation on MnAPO-18 catalysts.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp062869v</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2007-01, Vol.111 (3), p.1402-1411</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a297t-33bf4115407defc64cd10431a6c9175a537c673a11ee69a43a910fadfac6a3f83</citedby><cites>FETCH-LOGICAL-a297t-33bf4115407defc64cd10431a6c9175a537c673a11ee69a43a910fadfac6a3f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp062869v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp062869v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Modén, Björn</creatorcontrib><creatorcontrib>Zhan, Bi-Zeng</creatorcontrib><creatorcontrib>Dakka, Jihad</creatorcontrib><creatorcontrib>Santiesteban, José G</creatorcontrib><creatorcontrib>Iglesia, Enrique</creatorcontrib><title>Reactant Selectivity and Regiospecificity in the Catalytic Oxidation of Alkanes on Metal-Substituted Aluminophosphates</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The rate of n-hexane reactions with O2 increased in parallel with the concentration of hexyl hydroperoxide (ROOH) intermediates and with the number of Mnredox sites in microporous MnAPO-5 and MnAPO-18 catalysts. These data confirmed the catalytic nature of oxidation pathways and the mechanistic resemblance between n-alkane and cycloalkane oxidation pathways. Cyclohexane oxidation turnover rates were higher on MnAPO-5 than on MnAPO-18, because small channels in the latter inhibit contact between reactants and Mn active centers. In contrast, n-hexane oxidation turnover rates (per redox-active Mn center) were similar on MnAPO-5 and MnAPO-18, because smaller n-hexane reactants diffuse rapidly and contact active sites in both microporous structures. MnAPO-18 is able to select reactants based on their size, but no regiospecificity was detected on MnAPO-18 or MnAPO-5 for n-hexane oxidation to alkanols, aldehydes, and ketones (7−8% terminal selectivity). The relative reactivity of primary and secondary C−H bonds in n-hexane was identical on both catalysts (kprim/ksec = 0.10−0.11) and similar to that predicted from relative C−H bond energies in n-hexane using Evans−Polanyi relations. Spatial constraints within MnAPO-18 did not lead to any preference for terminal oxidation or to hexanoic acid as the main product, in contradiction with previous reports on materials with identical structure. The lack of specific regioselectivity on MnAPO-18 is not unexpected, in view of its large intracrystalline cages, of the accepted involvement of ROOH intermediates, and of the lack of diffusional constraints on the rates of n-hexane oxidation on MnAPO-18 catalysts.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNptkEtPAjEUhRujiYgu_AfduHAx2k47U2ZJiK8EgwFcN5fOrRSGmcm0EPj3lmBYubqvL-fkHkLuOXviLOXPq5bl6SAvdhekxwuRJkpm2eW5l-qa3Hi_YiwTjIse2U0RTIA60BlWaILbuXCgUJd0ij-u8S0aZ505Ll1NwxLpCAJUh-AMnexdCcE1NW0sHVZrqNHTOH1iJJLZduGDC9uAZTxuN65u2mUUXEJAf0uuLFQe7_5qn3y_vsxH78l48vYxGo4TSAsVEiEWVnKeSaZKtCaXpuRMCg65KbjKIBPK5EoA54h5AVJAwZmF0oLJQdiB6JPHk67pGu87tLrt3Aa6g-ZMHwPT58Aim5xY5wPuzyB0ax09VKbnXzPNZc6kSqdaRv7hxIPxetVsuzp-8o_uL49Ye6M</recordid><startdate>20070125</startdate><enddate>20070125</enddate><creator>Modén, Björn</creator><creator>Zhan, Bi-Zeng</creator><creator>Dakka, Jihad</creator><creator>Santiesteban, José G</creator><creator>Iglesia, Enrique</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070125</creationdate><title>Reactant Selectivity and Regiospecificity in the Catalytic Oxidation of Alkanes on Metal-Substituted Aluminophosphates</title><author>Modén, Björn ; Zhan, Bi-Zeng ; Dakka, Jihad ; Santiesteban, José G ; Iglesia, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-33bf4115407defc64cd10431a6c9175a537c673a11ee69a43a910fadfac6a3f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Modén, Björn</creatorcontrib><creatorcontrib>Zhan, Bi-Zeng</creatorcontrib><creatorcontrib>Dakka, Jihad</creatorcontrib><creatorcontrib>Santiesteban, José G</creatorcontrib><creatorcontrib>Iglesia, Enrique</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Modén, Björn</au><au>Zhan, Bi-Zeng</au><au>Dakka, Jihad</au><au>Santiesteban, José G</au><au>Iglesia, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactant Selectivity and Regiospecificity in the Catalytic Oxidation of Alkanes on Metal-Substituted Aluminophosphates</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2007-01-25</date><risdate>2007</risdate><volume>111</volume><issue>3</issue><spage>1402</spage><epage>1411</epage><pages>1402-1411</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The rate of n-hexane reactions with O2 increased in parallel with the concentration of hexyl hydroperoxide (ROOH) intermediates and with the number of Mnredox sites in microporous MnAPO-5 and MnAPO-18 catalysts. These data confirmed the catalytic nature of oxidation pathways and the mechanistic resemblance between n-alkane and cycloalkane oxidation pathways. Cyclohexane oxidation turnover rates were higher on MnAPO-5 than on MnAPO-18, because small channels in the latter inhibit contact between reactants and Mn active centers. In contrast, n-hexane oxidation turnover rates (per redox-active Mn center) were similar on MnAPO-5 and MnAPO-18, because smaller n-hexane reactants diffuse rapidly and contact active sites in both microporous structures. MnAPO-18 is able to select reactants based on their size, but no regiospecificity was detected on MnAPO-18 or MnAPO-5 for n-hexane oxidation to alkanols, aldehydes, and ketones (7−8% terminal selectivity). The relative reactivity of primary and secondary C−H bonds in n-hexane was identical on both catalysts (kprim/ksec = 0.10−0.11) and similar to that predicted from relative C−H bond energies in n-hexane using Evans−Polanyi relations. Spatial constraints within MnAPO-18 did not lead to any preference for terminal oxidation or to hexanoic acid as the main product, in contradiction with previous reports on materials with identical structure. The lack of specific regioselectivity on MnAPO-18 is not unexpected, in view of its large intracrystalline cages, of the accepted involvement of ROOH intermediates, and of the lack of diffusional constraints on the rates of n-hexane oxidation on MnAPO-18 catalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp062869v</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2007-01, Vol.111 (3), p.1402-1411
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_jp062869v
source American Chemical Society Journals
title Reactant Selectivity and Regiospecificity in the Catalytic Oxidation of Alkanes on Metal-Substituted Aluminophosphates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactant%20Selectivity%20and%20Regiospecificity%20in%20the%20Catalytic%20Oxidation%20of%20Alkanes%20on%20Metal-Substituted%20Aluminophosphates&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Mod%C3%A9n,%20Bj%C3%B6rn&rft.date=2007-01-25&rft.volume=111&rft.issue=3&rft.spage=1402&rft.epage=1411&rft.pages=1402-1411&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp062869v&rft_dat=%3Cacs_cross%3Ea160327348%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true