Implementation of Neural Networks for the Identification of Single Molecules

The effectiveness of neural networks and the optimization of parameters for implementing neural networks were evaluated for use in the identification of single molecules according to their fluorescence lifetime. The best network architecture and training parameters were determined for both ideal and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2004-05, Vol.108 (21), p.4799-4804
Hauptverfasser: Bowen, Benjamin P, Scruggs, Allan, Enderlein, Jörg, Sauer, Markus, Woodbury, Neal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4804
container_issue 21
container_start_page 4799
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 108
creator Bowen, Benjamin P
Scruggs, Allan
Enderlein, Jörg
Sauer, Markus
Woodbury, Neal
description The effectiveness of neural networks and the optimization of parameters for implementing neural networks were evaluated for use in the identification of single molecules according to their fluorescence lifetime. The best network architecture and training parameters were determined for both ideal and nonideal single-molecule fluorescence data. The effectiveness of the neural network is compared to that of the maximum likelihood estimator on the basis of its ability to correctly identify single molecules. For ideal single-molecule data, it was found that the neural networks and the maximum likelihood estimator perform approximately equally well. For nonideal single-molecule fluorescence data, neural networks were able to correctly identify a larger percentage of single-molecule events than the MLE method.
doi_str_mv 10.1021/jp036456v
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp036456v</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_263PLFDJ_J</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-7fb90fd7b11305f89872a9ec37d22f749456585987ef59630b38a66d83e967053</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgUQpDPyDLAwMgbMd2_GICi2pAlRqmS03sSFtGld2yse_x6ioE9OdTo9Ody9ClxhuMBB8u9oC5RnjH0dogBmBlBHMjmMPuUwZp_IUnYWwAgBMSTZAZbHZtmZjul73jesSZ5Nns_O6jaX_dH4dEut80r-bpKijamxTHeS86d5akzy51lS71oRzdGJ1G8zFXx2i1_HDYvSYli-TYnRXpppS6FNhlxJsLZYYU2A2l7kgWpqKipoQKzIZ72c5i2NjmeQUljTXnNc5NZILYHSIrvd7K-9C8MaqrW822n8rDOo3BnWIIdp0b5vQm68D1H6tuKCCqcVsrgins3J8P1XT6K_2XldBrdzOd_GTf_b-APBNal0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implementation of Neural Networks for the Identification of Single Molecules</title><source>American Chemical Society Journals</source><creator>Bowen, Benjamin P ; Scruggs, Allan ; Enderlein, Jörg ; Sauer, Markus ; Woodbury, Neal</creator><creatorcontrib>Bowen, Benjamin P ; Scruggs, Allan ; Enderlein, Jörg ; Sauer, Markus ; Woodbury, Neal</creatorcontrib><description>The effectiveness of neural networks and the optimization of parameters for implementing neural networks were evaluated for use in the identification of single molecules according to their fluorescence lifetime. The best network architecture and training parameters were determined for both ideal and nonideal single-molecule fluorescence data. The effectiveness of the neural network is compared to that of the maximum likelihood estimator on the basis of its ability to correctly identify single molecules. For ideal single-molecule data, it was found that the neural networks and the maximum likelihood estimator perform approximately equally well. For nonideal single-molecule fluorescence data, neural networks were able to correctly identify a larger percentage of single-molecule events than the MLE method.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp036456v</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2004-05, Vol.108 (21), p.4799-4804</ispartof><rights>Copyright © 2004 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-7fb90fd7b11305f89872a9ec37d22f749456585987ef59630b38a66d83e967053</citedby><cites>FETCH-LOGICAL-a330t-7fb90fd7b11305f89872a9ec37d22f749456585987ef59630b38a66d83e967053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp036456v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp036456v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Bowen, Benjamin P</creatorcontrib><creatorcontrib>Scruggs, Allan</creatorcontrib><creatorcontrib>Enderlein, Jörg</creatorcontrib><creatorcontrib>Sauer, Markus</creatorcontrib><creatorcontrib>Woodbury, Neal</creatorcontrib><title>Implementation of Neural Networks for the Identification of Single Molecules</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The effectiveness of neural networks and the optimization of parameters for implementing neural networks were evaluated for use in the identification of single molecules according to their fluorescence lifetime. The best network architecture and training parameters were determined for both ideal and nonideal single-molecule fluorescence data. The effectiveness of the neural network is compared to that of the maximum likelihood estimator on the basis of its ability to correctly identify single molecules. For ideal single-molecule data, it was found that the neural networks and the maximum likelihood estimator perform approximately equally well. For nonideal single-molecule fluorescence data, neural networks were able to correctly identify a larger percentage of single-molecule events than the MLE method.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgUQpDPyDLAwMgbMd2_GICi2pAlRqmS03sSFtGld2yse_x6ioE9OdTo9Ody9ClxhuMBB8u9oC5RnjH0dogBmBlBHMjmMPuUwZp_IUnYWwAgBMSTZAZbHZtmZjul73jesSZ5Nns_O6jaX_dH4dEut80r-bpKijamxTHeS86d5akzy51lS71oRzdGJ1G8zFXx2i1_HDYvSYli-TYnRXpppS6FNhlxJsLZYYU2A2l7kgWpqKipoQKzIZ72c5i2NjmeQUljTXnNc5NZILYHSIrvd7K-9C8MaqrW822n8rDOo3BnWIIdp0b5vQm68D1H6tuKCCqcVsrgins3J8P1XT6K_2XldBrdzOd_GTf_b-APBNal0</recordid><startdate>20040527</startdate><enddate>20040527</enddate><creator>Bowen, Benjamin P</creator><creator>Scruggs, Allan</creator><creator>Enderlein, Jörg</creator><creator>Sauer, Markus</creator><creator>Woodbury, Neal</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040527</creationdate><title>Implementation of Neural Networks for the Identification of Single Molecules</title><author>Bowen, Benjamin P ; Scruggs, Allan ; Enderlein, Jörg ; Sauer, Markus ; Woodbury, Neal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-7fb90fd7b11305f89872a9ec37d22f749456585987ef59630b38a66d83e967053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowen, Benjamin P</creatorcontrib><creatorcontrib>Scruggs, Allan</creatorcontrib><creatorcontrib>Enderlein, Jörg</creatorcontrib><creatorcontrib>Sauer, Markus</creatorcontrib><creatorcontrib>Woodbury, Neal</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowen, Benjamin P</au><au>Scruggs, Allan</au><au>Enderlein, Jörg</au><au>Sauer, Markus</au><au>Woodbury, Neal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Neural Networks for the Identification of Single Molecules</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2004-05-27</date><risdate>2004</risdate><volume>108</volume><issue>21</issue><spage>4799</spage><epage>4804</epage><pages>4799-4804</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The effectiveness of neural networks and the optimization of parameters for implementing neural networks were evaluated for use in the identification of single molecules according to their fluorescence lifetime. The best network architecture and training parameters were determined for both ideal and nonideal single-molecule fluorescence data. The effectiveness of the neural network is compared to that of the maximum likelihood estimator on the basis of its ability to correctly identify single molecules. For ideal single-molecule data, it was found that the neural networks and the maximum likelihood estimator perform approximately equally well. For nonideal single-molecule fluorescence data, neural networks were able to correctly identify a larger percentage of single-molecule events than the MLE method.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp036456v</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2004-05, Vol.108 (21), p.4799-4804
issn 1089-5639
1520-5215
language eng
recordid cdi_crossref_primary_10_1021_jp036456v
source American Chemical Society Journals
title Implementation of Neural Networks for the Identification of Single Molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Neural%20Networks%20for%20the%20Identification%20of%20Single%20Molecules&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Bowen,%20Benjamin%20P&rft.date=2004-05-27&rft.volume=108&rft.issue=21&rft.spage=4799&rft.epage=4804&rft.pages=4799-4804&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp036456v&rft_dat=%3Cistex_cross%3Eark_67375_TPS_263PLFDJ_J%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true