Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations

Mesoscopic nonequilibrium thermodynamics is used to derive the Butler−Volmer equation, or the stationary state nonlinear relation between the electric current density and the overpotential of an electrode surface. The equation is derived from a linear flux−force relationship at the mesoscopic level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2003-12, Vol.107 (48), p.13471-13477
Hauptverfasser: Rubi, J. M, Kjelstrup, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13477
container_issue 48
container_start_page 13471
container_title The journal of physical chemistry. B
container_volume 107
creator Rubi, J. M
Kjelstrup, S
description Mesoscopic nonequilibrium thermodynamics is used to derive the Butler−Volmer equation, or the stationary state nonlinear relation between the electric current density and the overpotential of an electrode surface. The equation is derived from a linear flux−force relationship at the mesoscopic level for the oxidation of a reactant to its charged components. The surface was defined with excess variables (a Gibbs surface). The Butler−Volmer equation was derived using the assumption of local electrochemical equilibrium in the surface on the mesoscopic level. The result was valid for an isothermal electrode with reaction-controlled charge transfer and with equilibrium for the reactant between the adjacent bulk phase and the surface. The formulation that is used for the mesoscopic level is consistent with nonequilibrium thermodynamics for surfaces and, thus, with the second law of thermodynamics. The Nernst equation is recovered in the reversible limit. The reversible/dissipative nature of the charge-transfer process is discussed on this basis.
doi_str_mv 10.1021/jp030572g
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp030572g</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c408584109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-4aabce9da3494537c3141621c04030f8a1ecd47cac0c3519e4d1901656859b143</originalsourceid><addsrcrecordid>eNptkMFKAzEYhIMoWKsH3yAXDx5Wk2yy6R5tqVWoVdraa_ibTW3q7qZNdsW-gWcf0SdxpVIQPPz8A_MxMIPQOSVXlDB6vVqTmAjJXg5QiwpGoubk4a9OKEmO0UkIK0KYYJ2khcKDCS5ot7Yaj1xpNrXN7dzbusDTpfGFy7YlFFYHPLBvJuBqafAECvPXxV0ItjEd7tZVbvzXx-fM5YXxGMoMj4wvQ4X7mxoq68pwio4WkAdz9vvb6Pm2P-3dRcPHwX3vZhgBY7KKOMBcmzSDmKdcxFLHlNOEUU1403HRAWp0xqUGTXQsaGp4RlNCE5F0RDqnPG6jy12u9i4EbxZq7W0BfqsoUT9rqf1aDRvtWBsq874Hwb-qRMZSqOnTRI3JeCZnjZANf7HjQQe1crUvmyb_5H4DQFF6uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations</title><source>ACS Publications</source><creator>Rubi, J. M ; Kjelstrup, S</creator><creatorcontrib>Rubi, J. M ; Kjelstrup, S</creatorcontrib><description>Mesoscopic nonequilibrium thermodynamics is used to derive the Butler−Volmer equation, or the stationary state nonlinear relation between the electric current density and the overpotential of an electrode surface. The equation is derived from a linear flux−force relationship at the mesoscopic level for the oxidation of a reactant to its charged components. The surface was defined with excess variables (a Gibbs surface). The Butler−Volmer equation was derived using the assumption of local electrochemical equilibrium in the surface on the mesoscopic level. The result was valid for an isothermal electrode with reaction-controlled charge transfer and with equilibrium for the reactant between the adjacent bulk phase and the surface. The formulation that is used for the mesoscopic level is consistent with nonequilibrium thermodynamics for surfaces and, thus, with the second law of thermodynamics. The Nernst equation is recovered in the reversible limit. The reversible/dissipative nature of the charge-transfer process is discussed on this basis.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp030572g</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2003-12, Vol.107 (48), p.13471-13477</ispartof><rights>Copyright © 2003 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a227t-4aabce9da3494537c3141621c04030f8a1ecd47cac0c3519e4d1901656859b143</citedby><cites>FETCH-LOGICAL-a227t-4aabce9da3494537c3141621c04030f8a1ecd47cac0c3519e4d1901656859b143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp030572g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp030572g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Rubi, J. M</creatorcontrib><creatorcontrib>Kjelstrup, S</creatorcontrib><title>Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Mesoscopic nonequilibrium thermodynamics is used to derive the Butler−Volmer equation, or the stationary state nonlinear relation between the electric current density and the overpotential of an electrode surface. The equation is derived from a linear flux−force relationship at the mesoscopic level for the oxidation of a reactant to its charged components. The surface was defined with excess variables (a Gibbs surface). The Butler−Volmer equation was derived using the assumption of local electrochemical equilibrium in the surface on the mesoscopic level. The result was valid for an isothermal electrode with reaction-controlled charge transfer and with equilibrium for the reactant between the adjacent bulk phase and the surface. The formulation that is used for the mesoscopic level is consistent with nonequilibrium thermodynamics for surfaces and, thus, with the second law of thermodynamics. The Nernst equation is recovered in the reversible limit. The reversible/dissipative nature of the charge-transfer process is discussed on this basis.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNptkMFKAzEYhIMoWKsH3yAXDx5Wk2yy6R5tqVWoVdraa_ibTW3q7qZNdsW-gWcf0SdxpVIQPPz8A_MxMIPQOSVXlDB6vVqTmAjJXg5QiwpGoubk4a9OKEmO0UkIK0KYYJ2khcKDCS5ot7Yaj1xpNrXN7dzbusDTpfGFy7YlFFYHPLBvJuBqafAECvPXxV0ItjEd7tZVbvzXx-fM5YXxGMoMj4wvQ4X7mxoq68pwio4WkAdz9vvb6Pm2P-3dRcPHwX3vZhgBY7KKOMBcmzSDmKdcxFLHlNOEUU1403HRAWp0xqUGTXQsaGp4RlNCE5F0RDqnPG6jy12u9i4EbxZq7W0BfqsoUT9rqf1aDRvtWBsq874Hwb-qRMZSqOnTRI3JeCZnjZANf7HjQQe1crUvmyb_5H4DQFF6uA</recordid><startdate>20031204</startdate><enddate>20031204</enddate><creator>Rubi, J. M</creator><creator>Kjelstrup, S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031204</creationdate><title>Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations</title><author>Rubi, J. M ; Kjelstrup, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-4aabce9da3494537c3141621c04030f8a1ecd47cac0c3519e4d1901656859b143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rubi, J. M</creatorcontrib><creatorcontrib>Kjelstrup, S</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubi, J. M</au><au>Kjelstrup, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2003-12-04</date><risdate>2003</risdate><volume>107</volume><issue>48</issue><spage>13471</spage><epage>13477</epage><pages>13471-13477</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Mesoscopic nonequilibrium thermodynamics is used to derive the Butler−Volmer equation, or the stationary state nonlinear relation between the electric current density and the overpotential of an electrode surface. The equation is derived from a linear flux−force relationship at the mesoscopic level for the oxidation of a reactant to its charged components. The surface was defined with excess variables (a Gibbs surface). The Butler−Volmer equation was derived using the assumption of local electrochemical equilibrium in the surface on the mesoscopic level. The result was valid for an isothermal electrode with reaction-controlled charge transfer and with equilibrium for the reactant between the adjacent bulk phase and the surface. The formulation that is used for the mesoscopic level is consistent with nonequilibrium thermodynamics for surfaces and, thus, with the second law of thermodynamics. The Nernst equation is recovered in the reversible limit. The reversible/dissipative nature of the charge-transfer process is discussed on this basis.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp030572g</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2003-12, Vol.107 (48), p.13471-13477
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp030572g
source ACS Publications
title Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20Nonequilibrium%20Thermodynamics%20Gives%20the%20Same%20Thermodynamic%20Basis%20to%20Butler%E2%88%92Volmer%20and%20Nernst%20Equations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Rubi,%20J.%20M&rft.date=2003-12-04&rft.volume=107&rft.issue=48&rft.spage=13471&rft.epage=13477&rft.pages=13471-13477&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp030572g&rft_dat=%3Cacs_cross%3Ec408584109%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true