Mechanism of Dihydrogen Formation in the Magnesium−Water Reaction

The thermodynamically favored reaction between water and magnesium, Mg + 2H2O → Mg(OH)2 + H2, is normally sluggish, but it becomes reasonably rapid when a milled composite of powdered magnesium metal and powdered iron (1−10 mol %) is used with sodium chloride solutions. Iron functions as an activato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2002-09, Vol.106 (35), p.8070-8078
Hauptverfasser: Taub, Irwin A, Roberts, Warren, LaGambina, Sebastian, Kustin, Kenneth
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8078
container_issue 35
container_start_page 8070
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 106
creator Taub, Irwin A
Roberts, Warren
LaGambina, Sebastian
Kustin, Kenneth
description The thermodynamically favored reaction between water and magnesium, Mg + 2H2O → Mg(OH)2 + H2, is normally sluggish, but it becomes reasonably rapid when a milled composite of powdered magnesium metal and powdered iron (1−10 mol %) is used with sodium chloride solutions. Iron functions as an activator, and chloride functions as a catalyst that depassivates the outermost oxide/hydroxide layer and allows water to penetrate to the activated magnesium surface. Adding solutes such as sodium nitrate, copper(II) chloride, and sodium trichloroacetate to the reaction mixture suppresses the yield of dihydrogen. Manometric and calorimetric studies on the stoichiometry and kinetics of the reaction between Mg(Fe) powders and aqueous solutions demonstrate that short-lived, partially, and fully solvated electrons ( and ) are precursors of dihydrogen and that they and the hydrogen atoms (H•) formed from them can be scavenged, resulting in suppressed dihydrogen yields.
doi_str_mv 10.1021/jp0143847
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp0143847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c539662596</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-51cfb10eca362ed4f87d184a0a14668f4bc4545aa270f1eaf97a04c5038d287a3</originalsourceid><addsrcrecordid>eNptz71OwzAUhmELgUQpDNyBFwaGgH9jZ0SFAFIrKloEm3Xq2G0KSSo7legdMHOJXAmpijoxnTM8-qQXoXNKrihh9Hq5IlRwLdQB6lHJSCIZlYfdT3SWyJRnx-gkxiUhhHImemgwcnYBdRkr3Hh8Wy42RWjmrsZ5Eypoy6bGZY3bhcMjmNculuvq5-v7FVoX8LMDuxWn6MjDR3Rnf7ePXvK76eAhGT7dPw5uhgmwTLaJpNbPKHEWeMpcIbxWBdUCCFCRptqLmRVSSACmiKcOfKaACCsJ1wXTCngfXe52bWhiDM6bVSgrCBtDidnWm319Z5OdLWPrPvcQwrtJFVfSTMcTM9Q5m2TyzYw7f7HzYKNZNutQdyX_7P4ChVpoPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of Dihydrogen Formation in the Magnesium−Water Reaction</title><source>ACS Publications</source><creator>Taub, Irwin A ; Roberts, Warren ; LaGambina, Sebastian ; Kustin, Kenneth</creator><creatorcontrib>Taub, Irwin A ; Roberts, Warren ; LaGambina, Sebastian ; Kustin, Kenneth</creatorcontrib><description>The thermodynamically favored reaction between water and magnesium, Mg + 2H2O → Mg(OH)2 + H2, is normally sluggish, but it becomes reasonably rapid when a milled composite of powdered magnesium metal and powdered iron (1−10 mol %) is used with sodium chloride solutions. Iron functions as an activator, and chloride functions as a catalyst that depassivates the outermost oxide/hydroxide layer and allows water to penetrate to the activated magnesium surface. Adding solutes such as sodium nitrate, copper(II) chloride, and sodium trichloroacetate to the reaction mixture suppresses the yield of dihydrogen. Manometric and calorimetric studies on the stoichiometry and kinetics of the reaction between Mg(Fe) powders and aqueous solutions demonstrate that short-lived, partially, and fully solvated electrons ( and ) are precursors of dihydrogen and that they and the hydrogen atoms (H•) formed from them can be scavenged, resulting in suppressed dihydrogen yields.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp0143847</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2002-09, Vol.106 (35), p.8070-8078</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-51cfb10eca362ed4f87d184a0a14668f4bc4545aa270f1eaf97a04c5038d287a3</citedby><cites>FETCH-LOGICAL-a295t-51cfb10eca362ed4f87d184a0a14668f4bc4545aa270f1eaf97a04c5038d287a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0143847$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0143847$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Taub, Irwin A</creatorcontrib><creatorcontrib>Roberts, Warren</creatorcontrib><creatorcontrib>LaGambina, Sebastian</creatorcontrib><creatorcontrib>Kustin, Kenneth</creatorcontrib><title>Mechanism of Dihydrogen Formation in the Magnesium−Water Reaction</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The thermodynamically favored reaction between water and magnesium, Mg + 2H2O → Mg(OH)2 + H2, is normally sluggish, but it becomes reasonably rapid when a milled composite of powdered magnesium metal and powdered iron (1−10 mol %) is used with sodium chloride solutions. Iron functions as an activator, and chloride functions as a catalyst that depassivates the outermost oxide/hydroxide layer and allows water to penetrate to the activated magnesium surface. Adding solutes such as sodium nitrate, copper(II) chloride, and sodium trichloroacetate to the reaction mixture suppresses the yield of dihydrogen. Manometric and calorimetric studies on the stoichiometry and kinetics of the reaction between Mg(Fe) powders and aqueous solutions demonstrate that short-lived, partially, and fully solvated electrons ( and ) are precursors of dihydrogen and that they and the hydrogen atoms (H•) formed from them can be scavenged, resulting in suppressed dihydrogen yields.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptz71OwzAUhmELgUQpDNyBFwaGgH9jZ0SFAFIrKloEm3Xq2G0KSSo7legdMHOJXAmpijoxnTM8-qQXoXNKrihh9Hq5IlRwLdQB6lHJSCIZlYfdT3SWyJRnx-gkxiUhhHImemgwcnYBdRkr3Hh8Wy42RWjmrsZ5Eypoy6bGZY3bhcMjmNculuvq5-v7FVoX8LMDuxWn6MjDR3Rnf7ePXvK76eAhGT7dPw5uhgmwTLaJpNbPKHEWeMpcIbxWBdUCCFCRptqLmRVSSACmiKcOfKaACCsJ1wXTCngfXe52bWhiDM6bVSgrCBtDidnWm319Z5OdLWPrPvcQwrtJFVfSTMcTM9Q5m2TyzYw7f7HzYKNZNutQdyX_7P4ChVpoPg</recordid><startdate>20020905</startdate><enddate>20020905</enddate><creator>Taub, Irwin A</creator><creator>Roberts, Warren</creator><creator>LaGambina, Sebastian</creator><creator>Kustin, Kenneth</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020905</creationdate><title>Mechanism of Dihydrogen Formation in the Magnesium−Water Reaction</title><author>Taub, Irwin A ; Roberts, Warren ; LaGambina, Sebastian ; Kustin, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-51cfb10eca362ed4f87d184a0a14668f4bc4545aa270f1eaf97a04c5038d287a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taub, Irwin A</creatorcontrib><creatorcontrib>Roberts, Warren</creatorcontrib><creatorcontrib>LaGambina, Sebastian</creatorcontrib><creatorcontrib>Kustin, Kenneth</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taub, Irwin A</au><au>Roberts, Warren</au><au>LaGambina, Sebastian</au><au>Kustin, Kenneth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Dihydrogen Formation in the Magnesium−Water Reaction</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2002-09-05</date><risdate>2002</risdate><volume>106</volume><issue>35</issue><spage>8070</spage><epage>8078</epage><pages>8070-8078</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The thermodynamically favored reaction between water and magnesium, Mg + 2H2O → Mg(OH)2 + H2, is normally sluggish, but it becomes reasonably rapid when a milled composite of powdered magnesium metal and powdered iron (1−10 mol %) is used with sodium chloride solutions. Iron functions as an activator, and chloride functions as a catalyst that depassivates the outermost oxide/hydroxide layer and allows water to penetrate to the activated magnesium surface. Adding solutes such as sodium nitrate, copper(II) chloride, and sodium trichloroacetate to the reaction mixture suppresses the yield of dihydrogen. Manometric and calorimetric studies on the stoichiometry and kinetics of the reaction between Mg(Fe) powders and aqueous solutions demonstrate that short-lived, partially, and fully solvated electrons ( and ) are precursors of dihydrogen and that they and the hydrogen atoms (H•) formed from them can be scavenged, resulting in suppressed dihydrogen yields.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp0143847</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2002-09, Vol.106 (35), p.8070-8078
issn 1089-5639
1520-5215
language eng
recordid cdi_crossref_primary_10_1021_jp0143847
source ACS Publications
title Mechanism of Dihydrogen Formation in the Magnesium−Water Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Dihydrogen%20Formation%20in%20the%20Magnesium%E2%88%92Water%20Reaction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Taub,%20Irwin%20A&rft.date=2002-09-05&rft.volume=106&rft.issue=35&rft.spage=8070&rft.epage=8078&rft.pages=8070-8078&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp0143847&rft_dat=%3Cacs_cross%3Ec539662596%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true