Oxygen Adsorption on (111)-Oriented Diamond:  A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory

Using ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and periodic density functional theory (DFT), we have investigated the oxidation chemistry of diamond (111) surface following its exposure to atomic oxygen generated from a remote radio frequency discharge....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2002-05, Vol.106 (20), p.5230-5240
Hauptverfasser: Loh, Kian Ping, Xie, X. N, Yang, S. W, Zheng, J. C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5240
container_issue 20
container_start_page 5230
container_title The journal of physical chemistry. B
container_volume 106
creator Loh, Kian Ping
Xie, X. N
Yang, S. W
Zheng, J. C
description Using ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and periodic density functional theory (DFT), we have investigated the oxidation chemistry of diamond (111) surface following its exposure to atomic oxygen generated from a remote radio frequency discharge. Partial O uptake occurs on the C(111) 2 × 1 surface at room temperature without lifting the surface reconstruction. A 2 × 1 → 1 × 1 transition and a full monolayer O coverage is only achieved following the oxygenation of the diamond surface at elevated temperatures (400 °C). Exchange of chemisorbed D by atomic O, and vice versa, is facile at room temperature. Desorption products originating from the reaction chemistry between O and D such as D2O were observed on the C(111) surface in addition to CO. The C(111) surface is readily graphitized following the desorption of CO from the surface. In addition, the structure and energetics of oxygenated C(111) 1 × 1 and C(111) 2 × 1 surfaces have been studied using periodic density functional theory (DFT). The oxidation processes have been examined in terms of the reaction heats. The calculations revealed that the epoxy configuration formed by bridging O on the Pandey chain is more stable at low O coverage, these converted to a carbonyl-type oxygen species at higher coverages. Reaction heat considerations suggest that hydroxyl-terminated C(111) 1 × 1 may be the final stable product in the presence of atomic hydrogen.
doi_str_mv 10.1021/jp0139437
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp0139437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a165180349</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-410237d48019cbd246db368c617301083a3a99afaec737dc0dd178b85e3771a73</originalsourceid><addsrcrecordid>eNptkM1KAzEQxxdR8PPgG-QiKLiabLqbXW_1oyoUWmgF8RLSZGpTdzdLkqp78-rL-FA-ialVT0KGDMyP3zD_KNon-ITghJzOG0xo0aFsLdoiaYLjUGz9p88IzjajbefmGCdpkmdb0cfgtX2EGnWVM7bx2tQovENCyFE8sBpqDwpdalGZWp19vr2jLhr5hWrRi_YzdFd6K561KcGj4cx4AyVIb4Nh1Hw3TpqmPUZjqBqwwi8sxENrHq2oqqUXfpceI1ErNASrjdIyDGqnfYt6i1oux6JE4xkY2-5GG1NROtj7-Xeiu97V-OIm7g-uby-6_VgkRerjTsiCMtXJMSnkRCWdTE1olsuMMIoJzqmgoijEVIBkgZNYKcLySZ4CZYwIRneio5VXhhuchSlvrK6EbTnBfBk0_ws6sPGK1c7D6x8o7BPPgj3l4-GIn2cMJ_f5A8eBP1jxQjo-NwsbznP_eL8Aks6Ovw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxygen Adsorption on (111)-Oriented Diamond:  A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory</title><source>American Chemical Society</source><creator>Loh, Kian Ping ; Xie, X. N ; Yang, S. W ; Zheng, J. C</creator><creatorcontrib>Loh, Kian Ping ; Xie, X. N ; Yang, S. W ; Zheng, J. C</creatorcontrib><description>Using ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and periodic density functional theory (DFT), we have investigated the oxidation chemistry of diamond (111) surface following its exposure to atomic oxygen generated from a remote radio frequency discharge. Partial O uptake occurs on the C(111) 2 × 1 surface at room temperature without lifting the surface reconstruction. A 2 × 1 → 1 × 1 transition and a full monolayer O coverage is only achieved following the oxygenation of the diamond surface at elevated temperatures (400 °C). Exchange of chemisorbed D by atomic O, and vice versa, is facile at room temperature. Desorption products originating from the reaction chemistry between O and D such as D2O were observed on the C(111) surface in addition to CO. The C(111) surface is readily graphitized following the desorption of CO from the surface. In addition, the structure and energetics of oxygenated C(111) 1 × 1 and C(111) 2 × 1 surfaces have been studied using periodic density functional theory (DFT). The oxidation processes have been examined in terms of the reaction heats. The calculations revealed that the epoxy configuration formed by bridging O on the Pandey chain is more stable at low O coverage, these converted to a carbonyl-type oxygen species at higher coverages. Reaction heat considerations suggest that hydroxyl-terminated C(111) 1 × 1 may be the final stable product in the presence of atomic hydrogen.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp0139437</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2002-05, Vol.106 (20), p.5230-5240</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a295t-410237d48019cbd246db368c617301083a3a99afaec737dc0dd178b85e3771a73</citedby><cites>FETCH-LOGICAL-a295t-410237d48019cbd246db368c617301083a3a99afaec737dc0dd178b85e3771a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0139437$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0139437$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Loh, Kian Ping</creatorcontrib><creatorcontrib>Xie, X. N</creatorcontrib><creatorcontrib>Yang, S. W</creatorcontrib><creatorcontrib>Zheng, J. C</creatorcontrib><title>Oxygen Adsorption on (111)-Oriented Diamond:  A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Using ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and periodic density functional theory (DFT), we have investigated the oxidation chemistry of diamond (111) surface following its exposure to atomic oxygen generated from a remote radio frequency discharge. Partial O uptake occurs on the C(111) 2 × 1 surface at room temperature without lifting the surface reconstruction. A 2 × 1 → 1 × 1 transition and a full monolayer O coverage is only achieved following the oxygenation of the diamond surface at elevated temperatures (400 °C). Exchange of chemisorbed D by atomic O, and vice versa, is facile at room temperature. Desorption products originating from the reaction chemistry between O and D such as D2O were observed on the C(111) surface in addition to CO. The C(111) surface is readily graphitized following the desorption of CO from the surface. In addition, the structure and energetics of oxygenated C(111) 1 × 1 and C(111) 2 × 1 surfaces have been studied using periodic density functional theory (DFT). The oxidation processes have been examined in terms of the reaction heats. The calculations revealed that the epoxy configuration formed by bridging O on the Pandey chain is more stable at low O coverage, these converted to a carbonyl-type oxygen species at higher coverages. Reaction heat considerations suggest that hydroxyl-terminated C(111) 1 × 1 may be the final stable product in the presence of atomic hydrogen.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEQxxdR8PPgG-QiKLiabLqbXW_1oyoUWmgF8RLSZGpTdzdLkqp78-rL-FA-ialVT0KGDMyP3zD_KNon-ITghJzOG0xo0aFsLdoiaYLjUGz9p88IzjajbefmGCdpkmdb0cfgtX2EGnWVM7bx2tQovENCyFE8sBpqDwpdalGZWp19vr2jLhr5hWrRi_YzdFd6K561KcGj4cx4AyVIb4Nh1Hw3TpqmPUZjqBqwwi8sxENrHq2oqqUXfpceI1ErNASrjdIyDGqnfYt6i1oux6JE4xkY2-5GG1NROtj7-Xeiu97V-OIm7g-uby-6_VgkRerjTsiCMtXJMSnkRCWdTE1olsuMMIoJzqmgoijEVIBkgZNYKcLySZ4CZYwIRneio5VXhhuchSlvrK6EbTnBfBk0_ws6sPGK1c7D6x8o7BPPgj3l4-GIn2cMJ_f5A8eBP1jxQjo-NwsbznP_eL8Aks6Ovw</recordid><startdate>20020523</startdate><enddate>20020523</enddate><creator>Loh, Kian Ping</creator><creator>Xie, X. N</creator><creator>Yang, S. W</creator><creator>Zheng, J. C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020523</creationdate><title>Oxygen Adsorption on (111)-Oriented Diamond:  A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory</title><author>Loh, Kian Ping ; Xie, X. N ; Yang, S. W ; Zheng, J. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-410237d48019cbd246db368c617301083a3a99afaec737dc0dd178b85e3771a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loh, Kian Ping</creatorcontrib><creatorcontrib>Xie, X. N</creatorcontrib><creatorcontrib>Yang, S. W</creatorcontrib><creatorcontrib>Zheng, J. C</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loh, Kian Ping</au><au>Xie, X. N</au><au>Yang, S. W</au><au>Zheng, J. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Adsorption on (111)-Oriented Diamond:  A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2002-05-23</date><risdate>2002</risdate><volume>106</volume><issue>20</issue><spage>5230</spage><epage>5240</epage><pages>5230-5240</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Using ultraviolet photoelectron spectroscopy (UPS), temperature programmed desorption (TPD), and periodic density functional theory (DFT), we have investigated the oxidation chemistry of diamond (111) surface following its exposure to atomic oxygen generated from a remote radio frequency discharge. Partial O uptake occurs on the C(111) 2 × 1 surface at room temperature without lifting the surface reconstruction. A 2 × 1 → 1 × 1 transition and a full monolayer O coverage is only achieved following the oxygenation of the diamond surface at elevated temperatures (400 °C). Exchange of chemisorbed D by atomic O, and vice versa, is facile at room temperature. Desorption products originating from the reaction chemistry between O and D such as D2O were observed on the C(111) surface in addition to CO. The C(111) surface is readily graphitized following the desorption of CO from the surface. In addition, the structure and energetics of oxygenated C(111) 1 × 1 and C(111) 2 × 1 surfaces have been studied using periodic density functional theory (DFT). The oxidation processes have been examined in terms of the reaction heats. The calculations revealed that the epoxy configuration formed by bridging O on the Pandey chain is more stable at low O coverage, these converted to a carbonyl-type oxygen species at higher coverages. Reaction heat considerations suggest that hydroxyl-terminated C(111) 1 × 1 may be the final stable product in the presence of atomic hydrogen.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp0139437</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2002-05, Vol.106 (20), p.5230-5240
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp0139437
source American Chemical Society
title Oxygen Adsorption on (111)-Oriented Diamond:  A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A24%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Adsorption%20on%20(111)-Oriented%20Diamond:%E2%80%89%20A%20Study%20with%20Ultraviolet%20Photoelectron%20Spectroscopy,%20Temperature-Programmed%20Desorption,%20and%20Periodic%20Density%20Functional%20Theory&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Loh,%20Kian%20Ping&rft.date=2002-05-23&rft.volume=106&rft.issue=20&rft.spage=5230&rft.epage=5240&rft.pages=5230-5240&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp0139437&rft_dat=%3Cacs_cross%3Ea165180349%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true