Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution

An all-atom 5 nanosecond molecular dynamics simulation of a water-solvated micelle containing 60 sodium dodecyl sulfate monomers was performed. Structural properties such as the radius of gyration, eccentricity, micellar size, accessible surface area, dihedral angle distribution, carbon atom distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2002-04, Vol.106 (15), p.3788-3793
Hauptverfasser: Bruce, Chrystal D, Berkowitz, Max L, Perera, Lalith, Forbes, Malcolm D. E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3793
container_issue 15
container_start_page 3788
container_title The journal of physical chemistry. B
container_volume 106
creator Bruce, Chrystal D
Berkowitz, Max L
Perera, Lalith
Forbes, Malcolm D. E
description An all-atom 5 nanosecond molecular dynamics simulation of a water-solvated micelle containing 60 sodium dodecyl sulfate monomers was performed. Structural properties such as the radius of gyration, eccentricity, micellar size, accessible surface area, dihedral angle distribution, carbon atom distribution, and the orientation of the monomers toward the micelle center of mass were evaluated. The results indicate a stable micellar system over the duration of the simulation. Evaluation of the structure and motion of the sodium counterions show (1) a long equilibration time (1 nanosecond) is required to achieve a stable distribution of counterions and (2) approximately 25% of the sodium ions are located in the first shell and 50% are located in the first two shells of the micelle during the course of the simulation. The structure of the micelle oxygen−sodium ion radial distribution function reveals two distinct peaks which divide the counterions into those close to the micelle (first shell) those far from the micelle (bulk) and those between (second shell). Finally, values of the diffusion coefficient for sodium ions followed a decreasing trend for ions in the bulk of the micellar system (D = 1.9 × 10 -5 cm2/s), ions in the second shell of the micelle (D = 1.4 × 10 -5 cm2/s), and those in the first shell of the micelle (D = 1.0 × 10 -5 cm2/s).
doi_str_mv 10.1021/jp013616z
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp013616z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b289250109</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-4946f7e6cefbfe337261e505fcf63a04877b0fafcf79ed1a4e64d9259f4d233</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKsL3yAbFy5Gc5lJOu6k9UqLwhR0F9JMgqmZScnMgHXlVvApfRIztHTlIiTn5-M7OQeAU4wuMCL4crlCmDLMPvfAAGcEJfHw_e2bYcQOwVHTLBEiGRmxAfiZeadV52SAk3UtK6saWNgqBq31NfQGFr60XQUnvtRq7WDROSNbDWdWaec0tDV8iXW4-v363obRVbShU20XpIPjNxmkioRt2t4u6xKOfVf3SewwiXGwi65vdwwOjHSNPtneQ1Dc3szH98n06e5hfD1NZBytTdI8ZYZrprRZGE0pJwzrDGVGGUYlSkecL5CRseS5LrFMNUvLnGS5SUtC6RCcb6wq-KYJ2ohVsJUMa4GR6JcodkuMbLJh4y_1xw6U4V0wTnkm5s-FKOiIPL6mM9G7zza8VI1Y-i7UcY5_vH8Hk4Rp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution</title><source>ACS Publications</source><creator>Bruce, Chrystal D ; Berkowitz, Max L ; Perera, Lalith ; Forbes, Malcolm D. E</creator><creatorcontrib>Bruce, Chrystal D ; Berkowitz, Max L ; Perera, Lalith ; Forbes, Malcolm D. E</creatorcontrib><description>An all-atom 5 nanosecond molecular dynamics simulation of a water-solvated micelle containing 60 sodium dodecyl sulfate monomers was performed. Structural properties such as the radius of gyration, eccentricity, micellar size, accessible surface area, dihedral angle distribution, carbon atom distribution, and the orientation of the monomers toward the micelle center of mass were evaluated. The results indicate a stable micellar system over the duration of the simulation. Evaluation of the structure and motion of the sodium counterions show (1) a long equilibration time (1 nanosecond) is required to achieve a stable distribution of counterions and (2) approximately 25% of the sodium ions are located in the first shell and 50% are located in the first two shells of the micelle during the course of the simulation. The structure of the micelle oxygen−sodium ion radial distribution function reveals two distinct peaks which divide the counterions into those close to the micelle (first shell) those far from the micelle (bulk) and those between (second shell). Finally, values of the diffusion coefficient for sodium ions followed a decreasing trend for ions in the bulk of the micellar system (D = 1.9 × 10 -5 cm2/s), ions in the second shell of the micelle (D = 1.4 × 10 -5 cm2/s), and those in the first shell of the micelle (D = 1.0 × 10 -5 cm2/s).</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp013616z</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2002-04, Vol.106 (15), p.3788-3793</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-4946f7e6cefbfe337261e505fcf63a04877b0fafcf79ed1a4e64d9259f4d233</citedby><cites>FETCH-LOGICAL-a361t-4946f7e6cefbfe337261e505fcf63a04877b0fafcf79ed1a4e64d9259f4d233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp013616z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp013616z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Bruce, Chrystal D</creatorcontrib><creatorcontrib>Berkowitz, Max L</creatorcontrib><creatorcontrib>Perera, Lalith</creatorcontrib><creatorcontrib>Forbes, Malcolm D. E</creatorcontrib><title>Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>An all-atom 5 nanosecond molecular dynamics simulation of a water-solvated micelle containing 60 sodium dodecyl sulfate monomers was performed. Structural properties such as the radius of gyration, eccentricity, micellar size, accessible surface area, dihedral angle distribution, carbon atom distribution, and the orientation of the monomers toward the micelle center of mass were evaluated. The results indicate a stable micellar system over the duration of the simulation. Evaluation of the structure and motion of the sodium counterions show (1) a long equilibration time (1 nanosecond) is required to achieve a stable distribution of counterions and (2) approximately 25% of the sodium ions are located in the first shell and 50% are located in the first two shells of the micelle during the course of the simulation. The structure of the micelle oxygen−sodium ion radial distribution function reveals two distinct peaks which divide the counterions into those close to the micelle (first shell) those far from the micelle (bulk) and those between (second shell). Finally, values of the diffusion coefficient for sodium ions followed a decreasing trend for ions in the bulk of the micellar system (D = 1.9 × 10 -5 cm2/s), ions in the second shell of the micelle (D = 1.4 × 10 -5 cm2/s), and those in the first shell of the micelle (D = 1.0 × 10 -5 cm2/s).</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkMtKAzEUhoMoWKsL3yAbFy5Gc5lJOu6k9UqLwhR0F9JMgqmZScnMgHXlVvApfRIztHTlIiTn5-M7OQeAU4wuMCL4crlCmDLMPvfAAGcEJfHw_e2bYcQOwVHTLBEiGRmxAfiZeadV52SAk3UtK6saWNgqBq31NfQGFr60XQUnvtRq7WDROSNbDWdWaec0tDV8iXW4-v363obRVbShU20XpIPjNxmkioRt2t4u6xKOfVf3SewwiXGwi65vdwwOjHSNPtneQ1Dc3szH98n06e5hfD1NZBytTdI8ZYZrprRZGE0pJwzrDGVGGUYlSkecL5CRseS5LrFMNUvLnGS5SUtC6RCcb6wq-KYJ2ohVsJUMa4GR6JcodkuMbLJh4y_1xw6U4V0wTnkm5s-FKOiIPL6mM9G7zza8VI1Y-i7UcY5_vH8Hk4Rp</recordid><startdate>20020418</startdate><enddate>20020418</enddate><creator>Bruce, Chrystal D</creator><creator>Berkowitz, Max L</creator><creator>Perera, Lalith</creator><creator>Forbes, Malcolm D. E</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020418</creationdate><title>Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution</title><author>Bruce, Chrystal D ; Berkowitz, Max L ; Perera, Lalith ; Forbes, Malcolm D. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-4946f7e6cefbfe337261e505fcf63a04877b0fafcf79ed1a4e64d9259f4d233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruce, Chrystal D</creatorcontrib><creatorcontrib>Berkowitz, Max L</creatorcontrib><creatorcontrib>Perera, Lalith</creatorcontrib><creatorcontrib>Forbes, Malcolm D. E</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruce, Chrystal D</au><au>Berkowitz, Max L</au><au>Perera, Lalith</au><au>Forbes, Malcolm D. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2002-04-18</date><risdate>2002</risdate><volume>106</volume><issue>15</issue><spage>3788</spage><epage>3793</epage><pages>3788-3793</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>An all-atom 5 nanosecond molecular dynamics simulation of a water-solvated micelle containing 60 sodium dodecyl sulfate monomers was performed. Structural properties such as the radius of gyration, eccentricity, micellar size, accessible surface area, dihedral angle distribution, carbon atom distribution, and the orientation of the monomers toward the micelle center of mass were evaluated. The results indicate a stable micellar system over the duration of the simulation. Evaluation of the structure and motion of the sodium counterions show (1) a long equilibration time (1 nanosecond) is required to achieve a stable distribution of counterions and (2) approximately 25% of the sodium ions are located in the first shell and 50% are located in the first two shells of the micelle during the course of the simulation. The structure of the micelle oxygen−sodium ion radial distribution function reveals two distinct peaks which divide the counterions into those close to the micelle (first shell) those far from the micelle (bulk) and those between (second shell). Finally, values of the diffusion coefficient for sodium ions followed a decreasing trend for ions in the bulk of the micellar system (D = 1.9 × 10 -5 cm2/s), ions in the second shell of the micelle (D = 1.4 × 10 -5 cm2/s), and those in the first shell of the micelle (D = 1.0 × 10 -5 cm2/s).</abstract><pub>American Chemical Society</pub><doi>10.1021/jp013616z</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2002-04, Vol.106 (15), p.3788-3793
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp013616z
source ACS Publications
title Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water:  Micellar Structural Characteristics and Counterion Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Sodium%20Dodecyl%20Sulfate%20Micelle%20in%20Water:%E2%80%89%20Micellar%20Structural%20Characteristics%20and%20Counterion%20Distribution&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Bruce,%20Chrystal%20D&rft.date=2002-04-18&rft.volume=106&rft.issue=15&rft.spage=3788&rft.epage=3793&rft.pages=3788-3793&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp013616z&rft_dat=%3Cacs_cross%3Eb289250109%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true