Elasticity through Nanoscale Distortions in Periodic Surfactant-Templated Porous Silica under High Pressure

High-pressure infrared absorption spectroscopy is used to examine changes in local bonding upon hydrostatic compression in both ordered surfactant-templated mesoporous silica and sintered sol−gel silica with a goal of connecting atomic scale structural changes with variations in nanoscale periodicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.Phys.Chem.B106:5613,2002 2002, 2002-06, Vol.106 (22), p.5613-5621
Hauptverfasser: Wu, Junjun, Zhao, Liang, Chronister, Eric L, Tolbert, Sarah H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5621
container_issue 22
container_start_page 5613
container_title J.Phys.Chem.B106:5613,2002
container_volume 106
creator Wu, Junjun
Zhao, Liang
Chronister, Eric L
Tolbert, Sarah H
description High-pressure infrared absorption spectroscopy is used to examine changes in local bonding upon hydrostatic compression in both ordered surfactant-templated mesoporous silica and sintered sol−gel silica with a goal of connecting atomic scale structural changes with variations in nanoscale periodicity. High-pressure IR absorption spectra are analyzed on the basis of a noncentral force model. It is found that the intertetrahedral bond angle and its distribution width in both the dense and the mesoporous silica decrease at elevated pressure up to 4 GPa. With increasing pressure above this value, decreases in the average bond angle and distribution width cease in the mesoporous silica, while they continue in the bulk material. The results suggest that in the mesoporous silica the nanometer length scale of the silica framework makes it energetically unfavorable to form high-density atomic scale structures at higher pressures (>4 GPa). Instead, further compression of the mesoporous silica takes place by distortion of the periodic pore structures on the nanometer scale (deformation of pores). Surprisingly, upon the release of pressure, structural changes on both the nanometer and atomic length scales are reversible. The results suggest that reversible nanometer scale distortions in periodic porous materials can replace the irreversible atomic scale distortions observed in bulk amorphous silica.
doi_str_mv 10.1021/jp013497n
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp013497n</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a712417052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a302t-6b047212c9c9443fa9cca37d23205c723d60bbeefbcd1bdf5f62e939d4c71fa63</originalsourceid><addsrcrecordid>eNptkD1PwzAQhiMEEqUw8A_MwMAQ8EdiNyOCQpEqiGiZLefiULfBrmxHov8eo1ZMDKe74blXep8suyT4lmBK7tZbTFhRCXuUjUhJcZ5GHB9uTjA_zc5CWGNMSzrho2wz7VWIBkzcobjybvhcoVdlXQDVa_RoQnQ-GmcDMhbV2hvXGkCLwXcKorIxX-qvba-iblHt0ntAC9MbUGiwrfZoZlJe7XUIg9fn2Umn-qAvDnucfTxNlw-zfP72_PJwP88VwzTmvMGFoIRCBVVRsE5VAIqJljKKSxCUtRw3jdZdAy1p2q7sONUVq9oCBOkUZ-Psap_rUjMZUjcNK3DWaohygqmoysTc7BnwLgSvO7n15kv5nSRY_pqUfyYTm-_ZZEN__4HKbyQXTJRyWS_krOTlfPL-KJeJv97zCoJcu8Hb1Paf3B-NyION</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elasticity through Nanoscale Distortions in Periodic Surfactant-Templated Porous Silica under High Pressure</title><source>American Chemical Society Journals</source><creator>Wu, Junjun ; Zhao, Liang ; Chronister, Eric L ; Tolbert, Sarah H</creator><creatorcontrib>Wu, Junjun ; Zhao, Liang ; Chronister, Eric L ; Tolbert, Sarah H ; Stanford Synchrotron Radiation Lab., CA (US) ; Stanford Linear Accelerator Center, Menlo Park, CA (US)</creatorcontrib><description>High-pressure infrared absorption spectroscopy is used to examine changes in local bonding upon hydrostatic compression in both ordered surfactant-templated mesoporous silica and sintered sol−gel silica with a goal of connecting atomic scale structural changes with variations in nanoscale periodicity. High-pressure IR absorption spectra are analyzed on the basis of a noncentral force model. It is found that the intertetrahedral bond angle and its distribution width in both the dense and the mesoporous silica decrease at elevated pressure up to 4 GPa. With increasing pressure above this value, decreases in the average bond angle and distribution width cease in the mesoporous silica, while they continue in the bulk material. The results suggest that in the mesoporous silica the nanometer length scale of the silica framework makes it energetically unfavorable to form high-density atomic scale structures at higher pressures (&gt;4 GPa). Instead, further compression of the mesoporous silica takes place by distortion of the periodic pore structures on the nanometer scale (deformation of pores). Surprisingly, upon the release of pressure, structural changes on both the nanometer and atomic length scales are reversible. The results suggest that reversible nanometer scale distortions in periodic porous materials can replace the irreversible atomic scale distortions observed in bulk amorphous silica.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp013497n</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ELASTICITY ; PARTICLE ACCELERATORS ; SILICA ; STANFORD LINEAR ACCELERATOR CENTER ; STANFORD SYNCHROTRON RADIATION LABORATORY ; SYNCHROTRON RADIATION</subject><ispartof>J.Phys.Chem.B106:5613,2002, 2002-06, Vol.106 (22), p.5613-5621</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a302t-6b047212c9c9443fa9cca37d23205c723d60bbeefbcd1bdf5f62e939d4c71fa63</citedby><cites>FETCH-LOGICAL-a302t-6b047212c9c9443fa9cca37d23205c723d60bbeefbcd1bdf5f62e939d4c71fa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp013497n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp013497n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/802795$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Junjun</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chronister, Eric L</creatorcontrib><creatorcontrib>Tolbert, Sarah H</creatorcontrib><creatorcontrib>Stanford Synchrotron Radiation Lab., CA (US)</creatorcontrib><creatorcontrib>Stanford Linear Accelerator Center, Menlo Park, CA (US)</creatorcontrib><title>Elasticity through Nanoscale Distortions in Periodic Surfactant-Templated Porous Silica under High Pressure</title><title>J.Phys.Chem.B106:5613,2002</title><addtitle>J. Phys. Chem. B</addtitle><description>High-pressure infrared absorption spectroscopy is used to examine changes in local bonding upon hydrostatic compression in both ordered surfactant-templated mesoporous silica and sintered sol−gel silica with a goal of connecting atomic scale structural changes with variations in nanoscale periodicity. High-pressure IR absorption spectra are analyzed on the basis of a noncentral force model. It is found that the intertetrahedral bond angle and its distribution width in both the dense and the mesoporous silica decrease at elevated pressure up to 4 GPa. With increasing pressure above this value, decreases in the average bond angle and distribution width cease in the mesoporous silica, while they continue in the bulk material. The results suggest that in the mesoporous silica the nanometer length scale of the silica framework makes it energetically unfavorable to form high-density atomic scale structures at higher pressures (&gt;4 GPa). Instead, further compression of the mesoporous silica takes place by distortion of the periodic pore structures on the nanometer scale (deformation of pores). Surprisingly, upon the release of pressure, structural changes on both the nanometer and atomic length scales are reversible. The results suggest that reversible nanometer scale distortions in periodic porous materials can replace the irreversible atomic scale distortions observed in bulk amorphous silica.</description><subject>ELASTICITY</subject><subject>PARTICLE ACCELERATORS</subject><subject>SILICA</subject><subject>STANFORD LINEAR ACCELERATOR CENTER</subject><subject>STANFORD SYNCHROTRON RADIATION LABORATORY</subject><subject>SYNCHROTRON RADIATION</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhiMEEqUw8A_MwMAQ8EdiNyOCQpEqiGiZLefiULfBrmxHov8eo1ZMDKe74blXep8suyT4lmBK7tZbTFhRCXuUjUhJcZ5GHB9uTjA_zc5CWGNMSzrho2wz7VWIBkzcobjybvhcoVdlXQDVa_RoQnQ-GmcDMhbV2hvXGkCLwXcKorIxX-qvba-iblHt0ntAC9MbUGiwrfZoZlJe7XUIg9fn2Umn-qAvDnucfTxNlw-zfP72_PJwP88VwzTmvMGFoIRCBVVRsE5VAIqJljKKSxCUtRw3jdZdAy1p2q7sONUVq9oCBOkUZ-Psap_rUjMZUjcNK3DWaohygqmoysTc7BnwLgSvO7n15kv5nSRY_pqUfyYTm-_ZZEN__4HKbyQXTJRyWS_krOTlfPL-KJeJv97zCoJcu8Hb1Paf3B-NyION</recordid><startdate>20020606</startdate><enddate>20020606</enddate><creator>Wu, Junjun</creator><creator>Zhao, Liang</creator><creator>Chronister, Eric L</creator><creator>Tolbert, Sarah H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20020606</creationdate><title>Elasticity through Nanoscale Distortions in Periodic Surfactant-Templated Porous Silica under High Pressure</title><author>Wu, Junjun ; Zhao, Liang ; Chronister, Eric L ; Tolbert, Sarah H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a302t-6b047212c9c9443fa9cca37d23205c723d60bbeefbcd1bdf5f62e939d4c71fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>ELASTICITY</topic><topic>PARTICLE ACCELERATORS</topic><topic>SILICA</topic><topic>STANFORD LINEAR ACCELERATOR CENTER</topic><topic>STANFORD SYNCHROTRON RADIATION LABORATORY</topic><topic>SYNCHROTRON RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Junjun</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chronister, Eric L</creatorcontrib><creatorcontrib>Tolbert, Sarah H</creatorcontrib><creatorcontrib>Stanford Synchrotron Radiation Lab., CA (US)</creatorcontrib><creatorcontrib>Stanford Linear Accelerator Center, Menlo Park, CA (US)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>J.Phys.Chem.B106:5613,2002</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Junjun</au><au>Zhao, Liang</au><au>Chronister, Eric L</au><au>Tolbert, Sarah H</au><aucorp>Stanford Synchrotron Radiation Lab., CA (US)</aucorp><aucorp>Stanford Linear Accelerator Center, Menlo Park, CA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elasticity through Nanoscale Distortions in Periodic Surfactant-Templated Porous Silica under High Pressure</atitle><jtitle>J.Phys.Chem.B106:5613,2002</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2002-06-06</date><risdate>2002</risdate><volume>106</volume><issue>22</issue><spage>5613</spage><epage>5621</epage><pages>5613-5621</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>High-pressure infrared absorption spectroscopy is used to examine changes in local bonding upon hydrostatic compression in both ordered surfactant-templated mesoporous silica and sintered sol−gel silica with a goal of connecting atomic scale structural changes with variations in nanoscale periodicity. High-pressure IR absorption spectra are analyzed on the basis of a noncentral force model. It is found that the intertetrahedral bond angle and its distribution width in both the dense and the mesoporous silica decrease at elevated pressure up to 4 GPa. With increasing pressure above this value, decreases in the average bond angle and distribution width cease in the mesoporous silica, while they continue in the bulk material. The results suggest that in the mesoporous silica the nanometer length scale of the silica framework makes it energetically unfavorable to form high-density atomic scale structures at higher pressures (&gt;4 GPa). Instead, further compression of the mesoporous silica takes place by distortion of the periodic pore structures on the nanometer scale (deformation of pores). Surprisingly, upon the release of pressure, structural changes on both the nanometer and atomic length scales are reversible. The results suggest that reversible nanometer scale distortions in periodic porous materials can replace the irreversible atomic scale distortions observed in bulk amorphous silica.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jp013497n</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof J.Phys.Chem.B106:5613,2002, 2002-06, Vol.106 (22), p.5613-5621
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp013497n
source American Chemical Society Journals
subjects ELASTICITY
PARTICLE ACCELERATORS
SILICA
STANFORD LINEAR ACCELERATOR CENTER
STANFORD SYNCHROTRON RADIATION LABORATORY
SYNCHROTRON RADIATION
title Elasticity through Nanoscale Distortions in Periodic Surfactant-Templated Porous Silica under High Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elasticity%20through%20Nanoscale%20Distortions%20in%20Periodic%20Surfactant-Templated%20Porous%20Silica%20under%20High%20Pressure&rft.jtitle=J.Phys.Chem.B106:5613,2002&rft.au=Wu,%20Junjun&rft.aucorp=Stanford%20Synchrotron%20Radiation%20Lab.,%20CA%20(US)&rft.date=2002-06-06&rft.volume=106&rft.issue=22&rft.spage=5613&rft.epage=5621&rft.pages=5613-5621&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp013497n&rft_dat=%3Cacs_osti_%3Ea712417052%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true