Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy

Femtosecond fluorescence upconversion has been utilized to study the band edge and deep trap emission dynamics of cadmium selenide (CdSe) nanocrystals (NC's) ranging in size from 27 to 72 Å in diameter. Both the band edge rise time and decay show a direct correlation to NC size, and a rise time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2001-01, Vol.105 (2), p.436-443
Hauptverfasser: Underwood, David F, Kippeny, Tadd, Rosenthal, Sandra J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 2
container_start_page 436
container_title The journal of physical chemistry. B
container_volume 105
creator Underwood, David F
Kippeny, Tadd
Rosenthal, Sandra J
description Femtosecond fluorescence upconversion has been utilized to study the band edge and deep trap emission dynamics of cadmium selenide (CdSe) nanocrystals (NC's) ranging in size from 27 to 72 Å in diameter. Both the band edge rise time and decay show a direct correlation to NC size, and a rise time that depends on excitation energy. Surface-oxidized and non-oxidized NC's display the same band edge fluorescence decay kinetics, but the relative amplitudes of the short and long components differ. The deep trap emission that appears within 2 ps is attributed to ultrafast relaxation of a surface selenium dangling bond electron to the valence band where it combines radiatively with the initial photogenerated hole. By this process, the large amplitude of the band edge emission that is attributed to direct electron/hole recombination is attenuated within the initial 2−6 ps. The long lifetime of the band edge emission originates from a triplet state, with an energy lying just below the lowest electronic level consistent with the “Dark Exciton”. The extended deep trap emission arises from the relaxation of the excited-state conduction band electron to a surface-localized hole or vice-versa. A new model is presented which describes these mechanisms for exciton relaxation in CdSe quantum dots.
doi_str_mv 10.1021/jp003088b
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_jp003088b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_TPS_GLFP5VTC_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-a361t-eb7da4e44c2e3c2cedcab2bd59bab2c22db5f945678db1d8f660a6281d4461763</originalsourceid><addsrcrecordid>eNptkE9Lw0AQxRdRsFYPfoO9ePAQ3d0km_QoqalC0UJbr8v-mUBqswm7q5hv70pLTx6GNww_3vAeQreUPFDC6ONuICQlZanO0ITmjCRxivPjzinhl-jK-x0hLGcln6Bhuw9ONtIHXEnnWnB4PlrZtdrj1uLKrAG_SdtrN_og9x7PIYDrWgsGqxHX0IXeg-6twfX-q3fgNVgNeDvE2zc43_YWrwfQwfVe98N4jS6a6AM3R52ibf28qV6S5fvitXpaJjLlNCSgCiMzyDLNINVMg9FSMWXymYqqGTMqb2ZZzovSKGrKhnMiOSupyTJOC55O0f3BV8fH3kEjBtd20o2CEvFXlThVFdnkwLY-wM8JlO5T8CItcrFZrcViWa_yj00lWOTvDrzUXuz6L2djkn98fwG0I3pe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy</title><source>ACS Publications</source><creator>Underwood, David F ; Kippeny, Tadd ; Rosenthal, Sandra J</creator><creatorcontrib>Underwood, David F ; Kippeny, Tadd ; Rosenthal, Sandra J</creatorcontrib><description>Femtosecond fluorescence upconversion has been utilized to study the band edge and deep trap emission dynamics of cadmium selenide (CdSe) nanocrystals (NC's) ranging in size from 27 to 72 Å in diameter. Both the band edge rise time and decay show a direct correlation to NC size, and a rise time that depends on excitation energy. Surface-oxidized and non-oxidized NC's display the same band edge fluorescence decay kinetics, but the relative amplitudes of the short and long components differ. The deep trap emission that appears within 2 ps is attributed to ultrafast relaxation of a surface selenium dangling bond electron to the valence band where it combines radiatively with the initial photogenerated hole. By this process, the large amplitude of the band edge emission that is attributed to direct electron/hole recombination is attenuated within the initial 2−6 ps. The long lifetime of the band edge emission originates from a triplet state, with an energy lying just below the lowest electronic level consistent with the “Dark Exciton”. The extended deep trap emission arises from the relaxation of the excited-state conduction band electron to a surface-localized hole or vice-versa. A new model is presented which describes these mechanisms for exciton relaxation in CdSe quantum dots.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp003088b</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2001-01, Vol.105 (2), p.436-443</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a361t-eb7da4e44c2e3c2cedcab2bd59bab2c22db5f945678db1d8f660a6281d4461763</citedby><cites>FETCH-LOGICAL-a361t-eb7da4e44c2e3c2cedcab2bd59bab2c22db5f945678db1d8f660a6281d4461763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp003088b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp003088b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Underwood, David F</creatorcontrib><creatorcontrib>Kippeny, Tadd</creatorcontrib><creatorcontrib>Rosenthal, Sandra J</creatorcontrib><title>Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Femtosecond fluorescence upconversion has been utilized to study the band edge and deep trap emission dynamics of cadmium selenide (CdSe) nanocrystals (NC's) ranging in size from 27 to 72 Å in diameter. Both the band edge rise time and decay show a direct correlation to NC size, and a rise time that depends on excitation energy. Surface-oxidized and non-oxidized NC's display the same band edge fluorescence decay kinetics, but the relative amplitudes of the short and long components differ. The deep trap emission that appears within 2 ps is attributed to ultrafast relaxation of a surface selenium dangling bond electron to the valence band where it combines radiatively with the initial photogenerated hole. By this process, the large amplitude of the band edge emission that is attributed to direct electron/hole recombination is attenuated within the initial 2−6 ps. The long lifetime of the band edge emission originates from a triplet state, with an energy lying just below the lowest electronic level consistent with the “Dark Exciton”. The extended deep trap emission arises from the relaxation of the excited-state conduction band electron to a surface-localized hole or vice-versa. A new model is presented which describes these mechanisms for exciton relaxation in CdSe quantum dots.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptkE9Lw0AQxRdRsFYPfoO9ePAQ3d0km_QoqalC0UJbr8v-mUBqswm7q5hv70pLTx6GNww_3vAeQreUPFDC6ONuICQlZanO0ITmjCRxivPjzinhl-jK-x0hLGcln6Bhuw9ONtIHXEnnWnB4PlrZtdrj1uLKrAG_SdtrN_og9x7PIYDrWgsGqxHX0IXeg-6twfX-q3fgNVgNeDvE2zc43_YWrwfQwfVe98N4jS6a6AM3R52ibf28qV6S5fvitXpaJjLlNCSgCiMzyDLNINVMg9FSMWXymYqqGTMqb2ZZzovSKGrKhnMiOSupyTJOC55O0f3BV8fH3kEjBtd20o2CEvFXlThVFdnkwLY-wM8JlO5T8CItcrFZrcViWa_yj00lWOTvDrzUXuz6L2djkn98fwG0I3pe</recordid><startdate>20010118</startdate><enddate>20010118</enddate><creator>Underwood, David F</creator><creator>Kippeny, Tadd</creator><creator>Rosenthal, Sandra J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20010118</creationdate><title>Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy</title><author>Underwood, David F ; Kippeny, Tadd ; Rosenthal, Sandra J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a361t-eb7da4e44c2e3c2cedcab2bd59bab2c22db5f945678db1d8f660a6281d4461763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Underwood, David F</creatorcontrib><creatorcontrib>Kippeny, Tadd</creatorcontrib><creatorcontrib>Rosenthal, Sandra J</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Underwood, David F</au><au>Kippeny, Tadd</au><au>Rosenthal, Sandra J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2001-01-18</date><risdate>2001</risdate><volume>105</volume><issue>2</issue><spage>436</spage><epage>443</epage><pages>436-443</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Femtosecond fluorescence upconversion has been utilized to study the band edge and deep trap emission dynamics of cadmium selenide (CdSe) nanocrystals (NC's) ranging in size from 27 to 72 Å in diameter. Both the band edge rise time and decay show a direct correlation to NC size, and a rise time that depends on excitation energy. Surface-oxidized and non-oxidized NC's display the same band edge fluorescence decay kinetics, but the relative amplitudes of the short and long components differ. The deep trap emission that appears within 2 ps is attributed to ultrafast relaxation of a surface selenium dangling bond electron to the valence band where it combines radiatively with the initial photogenerated hole. By this process, the large amplitude of the band edge emission that is attributed to direct electron/hole recombination is attenuated within the initial 2−6 ps. The long lifetime of the band edge emission originates from a triplet state, with an energy lying just below the lowest electronic level consistent with the “Dark Exciton”. The extended deep trap emission arises from the relaxation of the excited-state conduction band electron to a surface-localized hole or vice-versa. A new model is presented which describes these mechanisms for exciton relaxation in CdSe quantum dots.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp003088b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2001-01, Vol.105 (2), p.436-443
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_jp003088b
source ACS Publications
title Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20Carrier%20Dynamics%20in%20CdSe%20Nanocrystals%20Determined%20by%20Femtosecond%20Fluorescence%20Upconversion%20Spectroscopy&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Underwood,%20David%20F&rft.date=2001-01-18&rft.volume=105&rft.issue=2&rft.spage=436&rft.epage=443&rft.pages=436-443&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp003088b&rft_dat=%3Cistex_cross%3Eark_67375_TPS_GLFP5VTC_2%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true